IPv6 Network Measurement

Gaopeng Gou Institute of Information Engineering, Chinese Academy of Sciences School of Cyber Security, University of Chinese Academy of Sciences

www.iie.ac.cn

□IPv6 Deployment

✓ A Comprehensive Study of Accelerating IPv6 Deployment

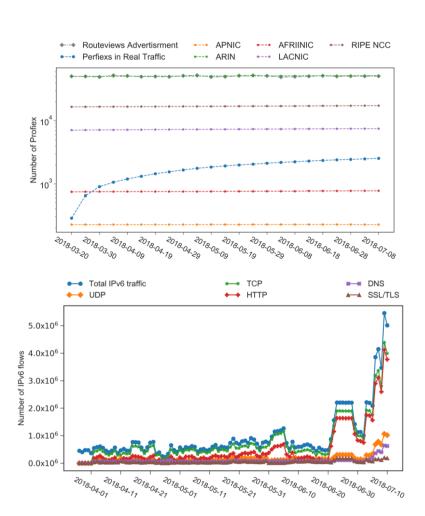
□IPv6 Target Generation

- ✓ IPv66GCVAE: Gated Convolutional Variational Autoencoder for
 - IPv6 Target Generation
- ✓ 6VecLM: Language Modeling in Vector Space for IPv6 Target Generation

A Comprehensive Study of Accelerating IPv6 Deployment

Background

2002 - 2014


- IPv6 traffic has increased over 400% per year. Czyz et al.

2016

- The increase rate of traffic volume and advertised prefixes are 130% and 65%. Pickard et al.

2017

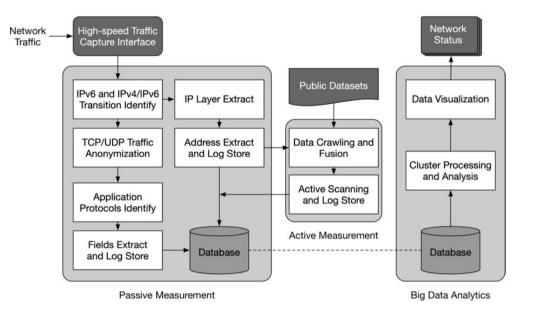
- China circulated an Action Plan for Promoting Scale Deployment of Internet Protocol Version 6 (IPv6).
 - 10-fold IPv6 traffic volume and 3-fold IPv6 prefixes increase
 - Problems behind outbreak of traffic and performance improvement events
 - A broader approach combined with multiple means

IPCCC 2019

A Comprehensive Study of Accelerating IPv6 Deployment

Methodology

Passive Measurement


- On the network named China Unicom from March to July in 2018

Active Measurement

- IPv6 TCP SYN scan for the Alexa Top sites and active IPv6 addresses

Big Data Analytics

- Selectively analyze from one or more standards.

IPCCC 2019

Methodology

Normal Status (Category N)

- Contrast global public datasets and IPv4 real traffic

Accelerating Status (Category A)

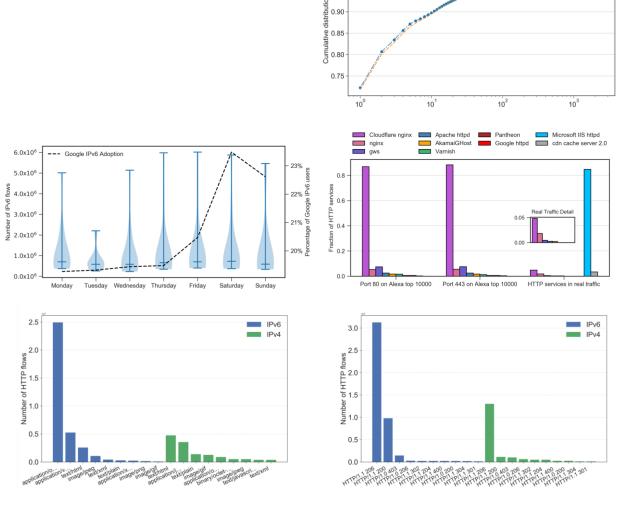
- Captured during the accelerating deployment

Dataset	Time Peroid	Scale	Category	Collection
MAXMIND GeoLite2 City	10 July 2018	global Geo-IP dataset		
RIR Address Allocations				
Routing: Route Views			Ν	
Google IPv6 Client Adoption	gle IPv6 Client Adoption 20 March - 10 July in 2018 daily global samples		19	Public
Verisign TLD Zone Files				
Alexa Top Sites	10 July 2018	Top 10K global sites, 1,696 Chinese sites in Top 1M		
CAIDA IPv6 Day and Launch Day	8 June 2011 and 6 June 2012	1TB pcap files of anonymized passive traffic	Α	
IPv6 Real Traffic Dataset	20 March - 10 July in 2018	170 million flows captured in 5 months	A	Passive
IPv4 Real Traffic Dataset	20 March - 30 April in 2018	35 million flows captured in 1 month	N	Measurement

A Comprehensive Study of Accelerating IPv6 Deployment

Network Status

Address Distribution


- Uneven geographical distribution
- Excessive concentration of prefixes Traffic Trend
- Explosive growth of IPv6 active addresses and traffic volume
- IPv6 traffic usage is different from the traditional website access services

Service Deployment

- Serious lack of IPv6 website and secure service deployment
- Huge shift on the server software deployment on IPv6 websites

Protocols

- Content Type and Response line in HTTP traffic is different from IPv4

Chinese IPv6 prefixs

1.00

0.95

IPCCC 2019

——— Global IPv6 prefixs

IPCCC 2019

Issues

User Privacy Threat

- Insufficient encrypted application usage
- low content encryption rates

Inappropriate Access Methods

- Excessive IPv4/IPv6 transition usage

Common Nature

- Accelerated deployment of protocol growth is similar
- Imbalance between HTTP and SSL/TLS traffic growth

Future Work

Conclusion

- the current accelerating status is unbalanced and unstable
- accelerating status exposes unresolved issues
- The improvement of network performance conflicts with the challenge of network security and stability.

Кеу

- IPv6 websites and network services construction
- Security web application for IPv6 users

□IPv6 Deployment

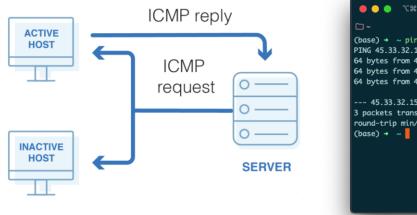
✓ A Comprehensive Study of Accelerating IPv6 Deployment

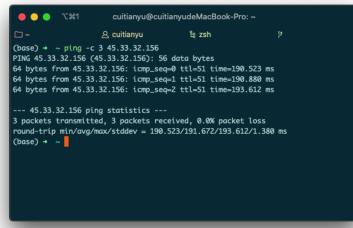
□IPv6 Target Generation

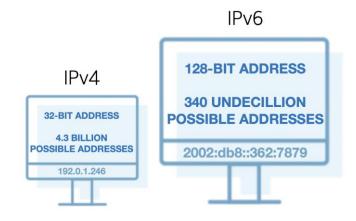
- ✓ IPv66GCVAE: Gated Convolutional Variational Autoencoder for
 - **IPv6 Target Generation**
- ✓ 6VecLM: Language Modeling in Vector Space for IPv6 Target Generation

IPv6 Scanning

What is Network Scanning

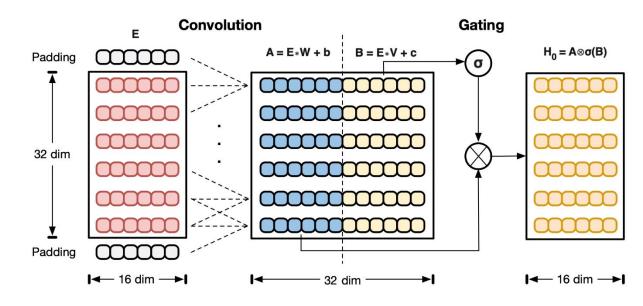

- A method to determine all active devices on the network.
- The system sends a ping to each device on the network and awaits a response by using a protocol (e.g. ICMP).
- Global IPv4 scanning has fundamentally enhanced the ability of researchers to conduct wide-ranging assessments of Internet services.


Challenge


- IPv6 has a 128-bit address space.

PAKDD 2020

- Using a brute-force approach to probe the entire network space of IPv6 is completely infeasible.



PAKDD 2020

- Replace target generation algorithms with deep learning architecture 6GCVAE
- Analyze address structure Gated convolutional networks
- Generate candidate sets VAE architecture
- Solve the multiple addressing scheme problem Seed classification

Gated Convolutional Networks

Why gated convolutional networks

- Convolution focus on structure and nybble relationships.
- Gating monitor the important nybbles in an address.

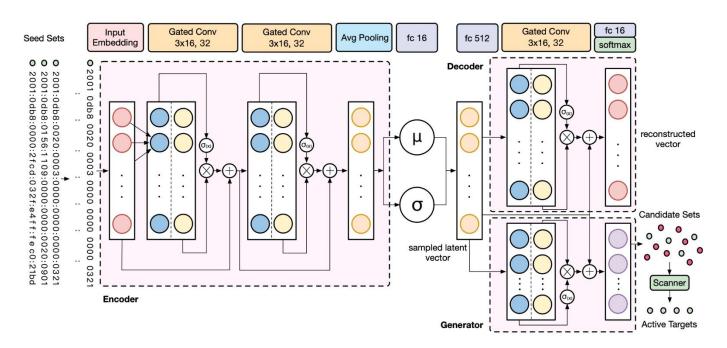
Convolution

Address nybbles 0-f alphabet

- Convert hexadecimal address to 32×16
 One-Hot Input E.
- 32 3 \times 16 convolution kernels output 2 32 \times 16 vectors A and B.

Gating

- Vector B with sigmoid function as the gate to control the output of vector A.
- Hidden layer H :


 $H_i = A \otimes \sigma B$

 σ is the sigmoid function. \otimes is the element-wise product between matrices.

PAKDD 2020

PAKDD 2020

6GCVAE

Encoder

- Two gated convolutional layers and an average pooling layer with a residual connection between each layer.
- Two fully connected layers to train the mean μ and the log variance log σ^2 .

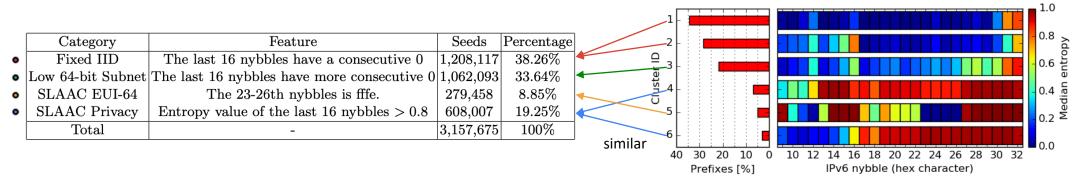
Decoder

- A gated convolutional layer, a fully connected layer, and a softmax activation.
- Generate a reconstructed vector for calculating reconstruction error.

Seed Classification

Early classification of seeds with different structural patterns can help to improve model performance.

Manual Classification


- Fixed IID a unique consecutive 0 in address
- Low 64-bit subnet two or more consecutive
 0 segments in address
- SLAAC EUI-64 the 23rd-26th nybbles fffe flag
- SLAAC privacy pseudo-random address

Unsupervised Clustering

- Calculate entropy value $H(X_i)$ on each nybble.
- Build fingerprint F_b^a by using the nybble entropy.

PAKDD 2020

 $egin{aligned} F_b^a &= (H(X_a), ..., H(X_i), ..., H(X_b)) \ H(X_i) &= -rac{1}{4} \sum_{x \in \Omega} P(x_i) \cdot log \ P(x_i) \end{aligned}$

Perform entropy clustering by using the fingerprint.

Dataset and Evaluation Method

Dataset

- IPv6 Hitlist Public dataset.¹
- CERN IPv6 2018 Passively collected address sets under the China Science and Technology Network from March to July 2018.

Dataset	Seeds	Period	Collection Method
IPv6 Hitlist	$3,\!157,\!675$	October 14, 2019	Public
CERN IPv6 2018	90,010	March 2018 - July 2018	Passive measurement

[1] Gasser, O., Scheitle, Q., Foremski, P., Lone, Q., Korczyń ski, M., Strowes, S.D., Hendriks, L., Carle, G.: Clusters in the expanse: Understanding and unbiasing ipv6 hitlists.
In: Proceedings of the Internet Measurement Conference 2018. pp. 364–378. ACM (2018)

[2] IPv6 Hitlist. <u>https://ipv6hitlist.github.io/</u>

Evaluation Method

- Zmapv6 tool.²
- ICMPv6, TCP/80, TCP/443, UDP/53, UDP/443 scanning.
- 3 days continuously scanning to ensure the accuracy.

Evaluation Metric

- *N_{candidate}* Number of the generated candidate set
- *N_{hit}* Number of generated active addresses
- N_{new} Active addresses which are not in the seed set

$$r_{hit} = \frac{N_{hit}}{N_{candidate}} \times 100\%$$
 $r_{gen} = \frac{N_{new}}{N_{candidate}} \times 100\%$

- r_{hit} learning ability to learn from the seed set.
- r_{gen} generation ability to generate new active addresses.

PAKDD 2020

Experimental Results

Seed Classification Results

- Manual Classification Fixed IID
- Unsupervised Clustering Cluster 2
- Seed Classification can improve model performance.

Model Performance

- 5 Conventional VAE models GRU VAE is the best but not competent for the task.
- Target generation algorithm Entropy/IP performs better than conventional VAE models.
- 6GCVAE reaches the best performance.

Seed Classification	Category	$N_{candidate}$	N_{hit}	N_{new}	r_{hit}	r_{gen}
None	IPv6 Hitlist	$756,\!658$	$14,\!894$	$9,\!685$	1.97%	1.28%
	Fixed IID	$412,\!181$	32,589	17,933	7.91%	4.35%
Manual	Low 64-bit Subnet	$901,\!222$	7,092	$5,\!450$	0.79%	0.61%
Classification	SLAAC EUI-64	$981,\!204$	1,299	1,263	0.13%	0.13%
	SLAAC Privacy	$999,\!920$	13,351	$13,\!351$	1.34%	1.34%
	Cluster 1	$526,\!542$	25,235	$12,\!364$	4.79%	2.35%
	Cluster 2	450,919	57,245	$35,\!508$	12.70%	7.87%
Unsupervised	Cluster 3	$759,\!617$	$5,\!273$	$2,\!404$	0.69%	0.32%
Clustering	Cluster 4	985,390	6,605	6,309	0.67%	0.64%
	Cluster 5	$832,\!917$	1,748	845	0.21%	0.10%
	Cluster 6	$968,\!178$	$1,\!193$	994	0.12%	0.10%

Model	$N_{candidate}$	N _{hit}	N_{new}	r_{hit}	r_{gen}
FNN VAE	1,000,000	68	68	0.007%	0.007%
RNN VAE	498,509	3,009	2,085	0.604%	0.418%
Convolutional VAE	$595,\!475$	4,432	2,856	0.744%	0.480%
LSTM VAE	$478,\!660$	4,464	3,203	0.933%	0.669%
GRU VAE	$525,\!134$	5,694	$4,\!548$	1.084%	0.866%
Entropy/IP	593,795	15,244	5,402	2.570%	0.910%
6GCVAE	$756,\!658$	14,894	$9,\!685$	1.970%	1.280%
6GCVAE with Manual Classification	$557,\!653$	28,957	$15,\!870$	5.193%	2.846%
6GCVAE with Unsupervised Clustering	$571,\!330$	54,915	$31,\!376$	9.611%	5.492%

□IPv6 Deployment

✓ A Comprehensive Study of Accelerating IPv6 Deployment

□IPv6 Target Generation

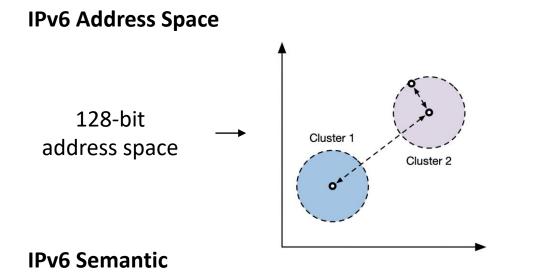
- ✓ IPv66GCVAE: Gated Convolutional Variational Autoencoder for
 - IPv6 Target Generation
- ✓ 6VecLM: Language Modeling in Vector Space for IPv6 Target Generation

ECML-PKDD 2020

Target Generation Challenge

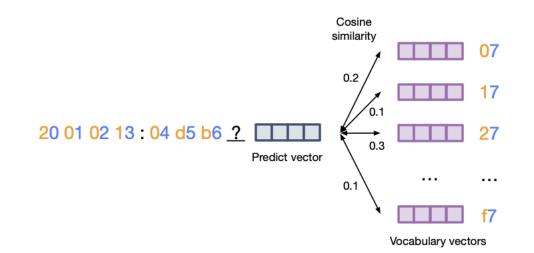
Challenge 1 - Missing semantics

Target Generation can <u>take place</u> of traditional IPv6 scanning. - phrase 2001:0db8:0106:0001:0000:0000:0000:0002 - what relationship ?


- IPv6 address entirely consists of digits.
- Inability to infer active addresses using sequence relationships.

Challenge 2 - Complexity of address composition

	Human-readable Text Format	Commonly Used Address Format
 Fixed IID Low 64-bit Subnet SLAAC EUI64 SLAAC Privacy 	2001:0db8:0106:0001:0000:0000:0003 2001:0db8:0100:0015:0000:0000:000a:0005 2001:0db8:0000:4144:1816:3ef f:1e57:0e6d 2001:0db8:fbd0:0021:7c61:2880:3148:36e1	2001:db8:106:1: :3 2001:db8:100:15: :a:5 2001:db8:0:4144: <mark>f816:3eff:fe57:e6d</mark> 2001:db8:fbd0:21:7c61:2880:3148:36e1


- Multiple IPv6 schemes cause difficulty in algorithmic inferences.

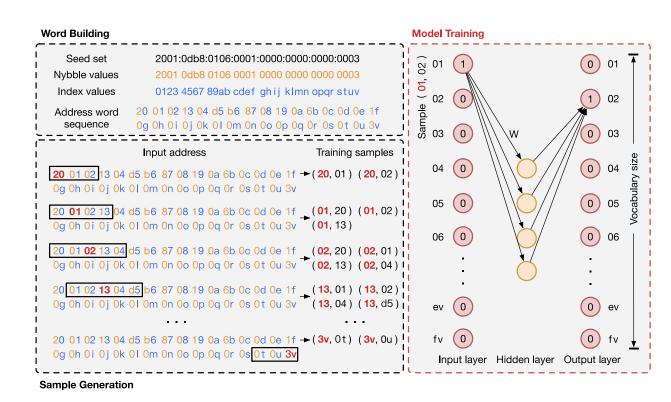
ECML-PKDD 2020

- Build address words and train word vectors.
- Language modeling to predict address vectors.
- cosine similarity as the next word probability for predicting address located in the target clusters with similar semantic.

- Map IPv6 address space into semantic vector space.
- The distance between vectors can be defined as the relationship between addresses.
- Similar addresses will be clustering, which helps to find the target clustering area.

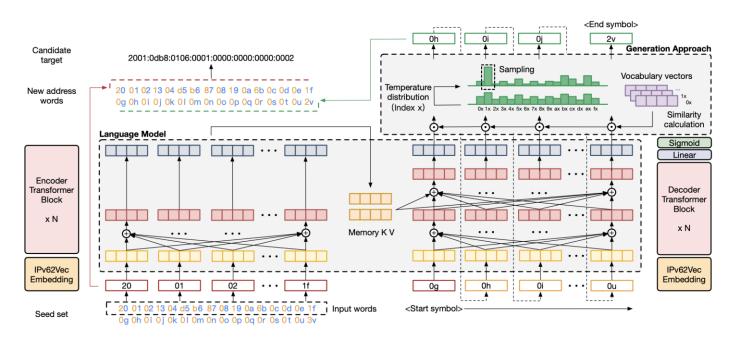
IPv62Vec

Word Building


- The new address word - $V_i S_i$

Sample Generation

 The training samples are generated from the corresponding combinations of input words and context words.


Model Training

- The neural network is fed with the input word and tries to predict the probability of the context word.
- The final hidden layer result is the vector representation of the input word.

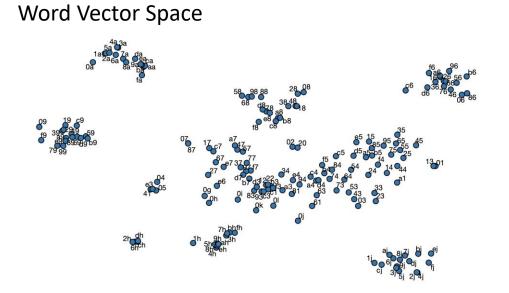
ECML-PKDD 2020

Transformer–IPv6

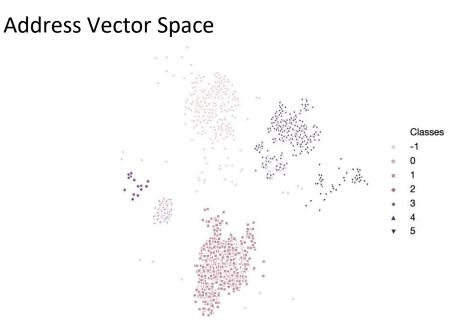
Language Modeling

- The first 16 words of the sequence are inputted in the Transformer encoder to predict the last 16 words.
- The last 16 words use the mask method to select the current input of the Transformer decoder.

Architecture


- Sigmoid activation function
- Transformer block layers n = 6
- Attention head number = 10

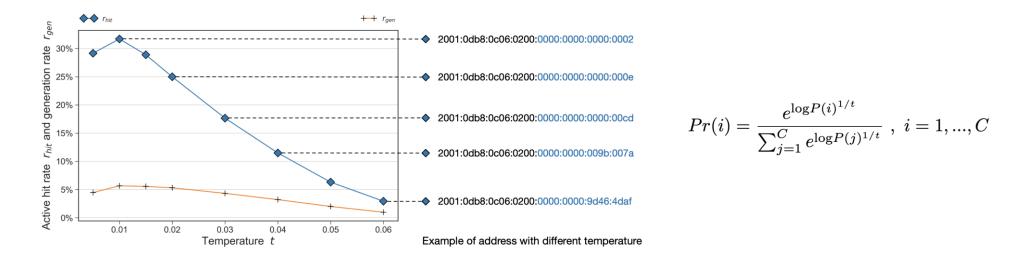
Why Transformer


- Attention mechanism helps address consider critical parts of the sequence.
- Multi-head attention mechanism helps generative tasks by observing more address word combinations.

ECML-PKDD 2020

IPv6 Vector Space

- Most address words are clustered according to their index attributes
- Index values 0-7 are close, which indicates that the network prefixes often have similar structures.



- IPv62Vec successfully divided addresses into several classes.
- Addresses under the same class perform a high similarity.

ECML-PKDD 2020

Temperature

Sampling Strategy

- Low temperature t sample greedily and the generated address is more close to the seed set.
- High temperature t sample randomly and the generated address contains more creative sequences.
- The model keeps the highest active hit rate r_{hit} and active generation rate r_{gen} when t = 0.01.

Evaluation Results

Baselines

- Prior paradigms of language models RNN, LSTM, GCNN.
- Target generation algorithms Entropy/IP, 6Gen.
- Adding IPv62Vec and generation approach RNN, LSTM, GCNN.

Experimental Results

Category	Model	$N_{candidate}$	N_{hit}	N_{gen}	r_{hit}	r_{gen}
Conventional	RNN [17]	34,604	995	851	2.88%	2.46%
language	LSTM $[14]$	34,636	727	564	2.10%	1.63%
model	GCNN [6]	$34,\!817$	787	649	2.26%	1.86%
Target generation	Entropy/IP [11]	69,167	8,321	$2,\!540$	12.03%	3.67%
algorithm	6Gen [19]	67,712	$4,\!612$	$1,\!638$	6.81%	2.42%
Adding	RNN [17]	44,242	12,133	$2,\!409$	27.42%	5.44%
IPv62Vec and	LSTM $[14]$	$61,\!950$	10,640	2,019	17.18%	3.26%
generation approach	GCNN [6]	$52,\!046$	11,360	$2,\!146$	21.83%	4.12%
Our approach	6VecLM	46,461	$15,\!406$	2,883	$\mathbf{33.16\%}$	6.21%

By adding generation approach and IPv62Vec mechanism, language models can reach a not bad performance.

ECML-PKDD 2020

6VecLM outperforms all the baselines in the experiment.

THANK YOU FOR ATTENTION

Gaopeng Gou gougaopeng@iie.ac.cn