

Detecting Fake AS-PATHs based on Link Prediction

Accepted by ISCC2023

Chengwan Zhang 2023.5.24

Mutually Agreed Norms for Routing Security (MANRS) 27 April 2018

• BGP hijacking refers to the behavior of an attacker who redirects traffic by injecting bogus routing information.

EN ES

BGP hijacking

- Origin hijacking: the attacker AS directly originates the victim' s IP prefix.
- Path hijacking: The attacker manipulates the AS-PATH before announcing the victim's IP prefix.

```
TIME: 05/13/03 00:01:45
TYPE: BGP4MP/MESSAGE/Update
FROM: 134.55.20.229 AS293
TO: 198.32.162.102 AS6447
WITHDRAW
 195.69.188.0/22
 198.153.20.0/22
 203.130.204.0/24
TIME: 05/13/03 00:01:45
TYPE: BGP4MP/MESSAGE/Update
FROM: 134.55.20.229 AS293
TO: 198.32.162.102 AS6447
ORIGIN: IGP
ASPATH: 293 1239 9405 4538
NEXT HOP: 134.55.20.229
ATOMIC_AGGREGATE
AGGREGATOR: AS4538 202.112.60.250
ANNOUNCE
 219.216.0.0/14
```

Origin Hijacking

• Origin hijacking will cause MOAS (Multi-Origin AS) conflict.

Path hijacking

• Path hijacking can evade MOAS ,but usually cause unseen AS link.

- Hybrid-plane detection technique (Argus, Fingerprints etc)
 - Treat **all unseen links** appearing in the control plane as suspicious event, then validate the event through the data-plane probing.
- Limitation
 - Unseen links are very common (New peering establishment, Backup links. Route policy changes, etc), and only a few of them are due to path hijacking.
 - Existing methods encounter severe data-plane overhead waste, making them Inefficient and difficult to guarantee real-time.

- Evaluating the authenticity of unseen links with link prediction and filtering the benign unseen links.
- Link prediction: a technique for inferring whether a link is likely to exist between two nodes from an existing observable portion of the network.

Is AS link predictable?

- Zhuang et al recently formulate the link prediction as a matrix completion task. Their work explain the predictability of AS link.
- Graph characteristics of AS-level topology
 - power-law distribution
 - negative degree-degree correlation
 - Hierarchical
 - AS links usually connect two ASes with the same properties.

Unseen link classification

- We select SEAL as the link prediction algorithm
- CAIDA AS relationship 2021 & AS location、 type and size
- Training with positive and negative samples
- The accuracy reached 0.95 and the AUC reached 0.98

Metis: a fake AS-PATHs detection framework

- Still based on unseen links
- Combine link prediction and rules
- Link prediction is used to find suspicious unseen links, and rules are used to improve the confidence level

- Links are believed to be real links on the current AS topology
- Goal: more historical seen links but few obsolete links
- Our method: union of the past 6 months of the CAIDA AS relationship dataset

Fig. 7: The number of union AS links in CAIDA AS relationship data of the past N months of November 2021

COPYRIGHT © 2020 UC REGENTS

- To evaluating the authenticity of unseen links
- Trained with reliable links and side information of ASes
- In the framework, it can use any link prediction algorithm

Type-1 unseen link detection

- Type-1 link with unseen new AS, cannot be evaluated by link predictor
- account for a relatively small percentage
- 3 simple rules:
 - The new AS is a reserved ASN
 - 24514 24490 24489 23911 4538 **65534**
 - The new AS is not registered in the whois data of the 5 RIRs
 - 24514 24490 24489 23911 4538 <u>66666</u>
 - The new AS is not the last hop in the AS-PATH (Our measurement show more than 97% of newly used ASes appear on the Internet as a stub AS.)
 - 24514 24490 24489 23911 4537 4538

 Input into link predictor, and then determine the confidence level with Type-2 rules.

Suspicious, confidence score

Type-2 rules

- Initial confidence score is 0
- The score increases 1 when:
 - AS-PATH is longer than the pre-set length threshold
 - The link with single digit ASN in the right side
 - The edit distance of the ASes is 1
 - Loop in AS-PATH, and the link is in the loop
 - AS-PATH violate valley-free rule
 - Traffic detour in the AS-PATH
- The score reduced by 2 when:
 - The suspicious link is at the end of the AS-PATH and the link is a domestic link

- Dataset
 - 7000 AS-PATHs in the RIB of RIPE RRC00 at 00:00 UTC on November 1, 2021
 - Misconfiguration
 - 24514 24490 24489 23911 **4538 3**
 - 24514 24490 24489 23911 **4538 4528**
 - BGP Poisoning
 - 24514 24490 24489 23911 4538 **123 4538**
 - 24514 24490 24489 23911 4538 **123 456 4538**
 - Path hijacking
 - 24514 24490 24489 23911 4538 16509
 - 24514 24490 24489 23911 4538 3356 16509

- Prediction values of crafted Type-2 links are significantly lower than that of the normal links in the RIB
- When the threshold is 0.8, the classification accuracy and recall are around 80%

• The accuracy of positive AS-PATHs is about 99.5%, and the accuracy of Type-1 path hijacking is 87.5%.

Type of AS-PATH	Number	Reliable	Type-1	Type-2	valid	Suspicious AS-PATH			Acouracy	
Type of AS-FATH		link	link	link	AS-PATH	Type-1	high	medium	low	Accuracy
GREEN AS-PATHs	7000	11181	358	187	6966	5	3	6	20	99.5%
Type-1 Misconfiguration	1000	2231	108	985	167	0	924	0	0	92.4%
Type-2 Misconfiguration	1000	2174	496	582	256	247	528	0	0	77.5%
Type-1 hijacking	1000	2213	163	940	125	3	345	481	46	87.5 %
Type-2 hijacking	1000	3018	153	984	493	2	322	176	7	50.7 %
Type-3 hijacking	1000	3706	160	935	700	0	250	50	0	30.0%
Type-1 BGP poisoning	1000	2237	236	940	107	14	879	0	0	89.3%
Type-2 BGP poisoning	1000	2241	372	2731	11	15	974	0	0	98.9%

TABLE III: Result of crafted AS-PATHs

- Type-N hijacking: N is the **length of fake segment** in the AS-PATH.
- Normal AS-PATH:
 - 24514 24490 24489 23911 4538
- AS4538(CERNET) is attempt to hijack AS16509(AMAZON)
- Type-1 hijacking:
 - 24514 24490 24489 23911 4538 16509
 - Fake link : 4538-16059
- Type-2 hijacking:
 - 24514 24490 24489 23911 4538 3356 16509
 - Fake link : 4538-3356

- Type-N hijacking: N is the **length of fake segment** in the AS-PATH.
- Path hijacking
 - AS the N grows, the fake AS-PATHs will more likely to cause

valley, traffic detour and longer AS-PATH.

Argus vs Metis

- Detection of BGP updates • from RRC00 for the entire month of November 2021
- Link prediction threshold set to 0.8, Metis filters 1255.2 unseen links, or 80.2% of all links.

Prediction value

Seen reliable link	New AS	Type-1 link	Suspicious Type-1 link	Type-2 link	Suspicious Type-2 link	
161808.2	30	244	7.3	1321.0	302.5	

- Historical path hijacking detection
- 7 of 18 detected
- false negative reason:
 - 1. some hijackings (bitcanal, etc.) insert ASNs registered in the RIR but not used, thus bypassing Metis' Type-1 detection.
 - 2. Some hijackings insert real unseen links.

Event title	Hijack type	Type-1 link Number	Type-2 link Number	(sub)MOAS	Origin AS set Format	Alarm
bitcanal_3	subprefix	1	0	1	{V,N}	×
bitcanal_4	subprefix	1	0	1	{V,N}	×
petersburg_unused_1	unused	1	0	×	{N}	×
petersburg_unused_2	unused	1	0	×	{N}	×
petersburg_1	subprefix	1	0	1	{V,N}	×
petersburg_2	subprefix	1	0	1	{V,N}	×
Torg_1	prefix	0	2	1	{V,O}	×
Torg_2	prefix	0	2	1	{V,O}	×
Torg_3	prefix	0	2	1	{V,O}	×
backconnect_3	subprefix	2	5	1	{V,H,O}	1
backconnect_5	subprefix	0	2	1	{V,O}	1
backconnect_6	subprefix	0	2	1	{V,H,O}	1
france_1	subprefix	0	1	1	{V,O}	1
enzu_1	subprefix	0	3	×	{V}	1
facebook_1	subprefix	0	2	×	{V}	×
calson_1	subprefix	1	0	1	{V,O,N}	1
Defcon_1	subprefix	0	1	1	${V,H}$	×
amazon_1	prefix	0	1	×	{V1,V2}	1

Conclusion

- We have experimentally demonstrated that AS links are predictable.
- We proposed link prediction based fake AS-PATHs detection framework Metis. It can effectively detect fake AS-PATHs caused by misconfiguration, BGP poisoning and path hijacking and can save 80.2% data-plane cost for unseen link based system like Argus.
- Future work: link prediction values and AS-PATH features into an ML model to classify them automatically.

Thank You Q&A