
Network Traffic Classification with

Federated Learning

Presenter: Dan Wang

1The Hong Kong Polytechnic University

Department of Computing

The Hong Kong Polytechnic University



Outline

◼ Background

❑ Network Traffic Classification

❑ Federated Learning

◼ Federated Learning for Network Traffic Classification

❑ A Federated Approach for Network Traffic Classification in 

Heterogeneous Environments

❑ Robust Federated Learning for Network Traffic Classification 

with Noisy Labels

◼ Conclusion

The Hong Kong Polytechnic University 2



Background

◼ Network Traffic Classification 

❑ Identifying the type or class of traffic flowing over a network

❑ A foundation for many network security and network management applications

❑ Applications: traffic engineering, network monitoring, Quality of Service

The Hong Kong Polytechnic University 3



Background

◼ Methods

❑ Traditional network traffic classification methods

◼ Port-based methods

◼ Payload-based methods

❑ Deep learning

◼ A large amount of labelled traffic data is required for learning

◼ Privacy leakage risk of raw data in each client

❑ i.e., traffic data related to the user behavior

◼ Lack of scalability

❑ Transferring all this data to a central server for processing can be inefficient and 

may not scale well
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Less effective for dynamic port numbers or encrypted data



Background

◼ Federated learning

❑ Introduced by Google in 2017

❑ A promising learning paradigm proposed to protect user data privacy

❑ Collaboratively learn a model while keeping all the data in local

◼ Global model distribution
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Background

◼ Federated learning

❑ Introduced by Google in 2017

❑ A promising learning paradigm proposed to protect user data privacy

❑ Collaboratively learn a model while keeping all the data in local

◼ Global model distribution

◼ Local training

The Hong Kong Polytechnic University 6

Server



Background

◼ Federated learning

❑ Introduced by Google in 2017

❑ A promising learning paradigm proposed to protect user data privacy

❑ Collaboratively learn a model while keeping all the data in local

◼ Global model distribution

◼ Local training

◼ Local updates aggregation
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Challenges of Applying Federated Learning

◼ Heterogeneity

❑ Participating clients can have significant differences in terms of their 

computational resources, network connectivity, availability , and the 

amount of the data they have.

◼ Resilience to noisy data

❑ Data noise (i.e., noisy labels) occurred during learning

◼ Communication Overhead

❑ Frequent communication between the central server and the client devices

◼ System Design and Management

❑ Coordinating across many devices, handling device failures or dropouts
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A Federated Approach for Network Traffic 

Classification in Heterogeneous Environments
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Heterogeneous Environments

◼ Device Heterogeneity
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Heterogeneous Environments

◼ Data Heterogeneity

❑ Class distribution of the client data is skewed
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FEAT: A Federated Approach for Network Traffic 

Classification in Heterogeneous Environments

◼ Motivation

❑ Clients with different skewness are not equally beneficial to federated learning

◼ Skewness: the severity of data heterogeneity

◼ Idea: heterogeneity-aware client selection

❑ Measure the skewness of the clients

❑ Select clients with low skewness
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Heterogeneity-aware Client Selection

◼ Three steps

❑ Insight generation

◼ Clients generate insights about the skewness of its 

local data

❑ Skewness generation

◼ Server aggregates the insights and infer about client 

skewness

❑ Client selection

◼ Server selects the participating clients based on the 

skewness estimation
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Heterogeneity-aware Client Selection

◼ Challenges
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Step 2: Skewness estimation

• It should derive useful 

knowledge from the indirect 

insights

• The procedure should be 

mathematically sound

Step 1: Insight generation

• The insight should be 

informative about the client 

skewness

• The insight should be indirect 

to protect raw data privacy

Step 3: Client selection

• The selection should be 

robust to the system 

uncertainty

• The selection should satisfy 

requirements of the host 

tasks



Step 1: Insight Generation

◼ The insight generation is formulated as gradient descent

❑ Weight change of the neural network is used as insight

◼ Consistent to its host task, federated learning

◼ Benefits:

❑ Do not need to install new computation scheme on the clients

❑ Reuse the model distribution of FL, and reduce communication

❑ Preserve the privacy protection level as FL
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Step 2: Skewness Estimation

◼ Key idea: gradient (weight) from one client is the average of 

gradient derived by each individual data of the client
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Gradient derived by one datum

Gradient of the client



Step 2: Skewness Estimation

◼ Hoeffding’s inequality

❑ Provides possibility bound of average values diverging from their exception

◼ Result of skewness estimation: higher 𝑅𝑖 indicates lower skewness
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Hoeffding’s inequality: Supposed 𝑋1, … , 𝑋𝑛 are independent variables, 𝑋𝑖 ∈ 𝑎𝑖 , 𝑏𝑖 , ത𝑋 is the average of 

𝑋𝑖, there’s

Pr | ത𝑋 − 𝐸 ത𝑋 | ≥ 𝜖 < 2exp(
2𝜖2𝑛2

σ𝑖=1
𝑛 𝑏𝑖 − 𝑎𝑖

2)

Denote Δ𝑤𝑖 as the uploaded gradient from client 𝑖, and Δ𝑤 as the average of uploaded gradients among 

all participating clients, there’s

𝑅𝑖 = − Δ𝑤𝑖 − Δ𝑤 2



Step 3: Client Selection

◼ Client selection is formulated as a multi-bandit dueling problem

❑ Dueling bandit design

◼ Participating client “duel” with each other using their rewards

◼ Train the bandit using the dueling results
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𝑅𝑖 = −2

𝑤𝑖𝑛 = 2, 𝑙𝑜𝑠𝑒 = 0

𝑅𝑗 = −3

𝑤𝑖𝑛 = 1, 𝑙𝑜𝑠𝑒 = 1

𝑅𝑘 = −10

𝑤𝑖𝑛 = 0, 𝑙𝑜𝑠𝑒 = 2



Step 3: Client Selection

◼ Client selection is formulated as a multi-bandit dueling problem

❑ Thompson Sampling based Clients Selection

◼ There are 𝑁 clients at all, and 𝑀 participants in each round

◼ The bandit find 𝜆 ⋅𝑁 clients with low skewness to form a candidate pool

◼ Then randomly draw 𝑀 from the candidate pool as participants

❑ λ is designed for the tradeoff between selecting the clients with low skewness

and providing the training model with more raw traffic data samples.
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Theoretical Analysis

◼ Convergence Analysis

❑ The distance of the loss value between the learned model and the optimal 

model is bounded
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Theorem 2. Let 𝜅 = (𝐿/𝜇), 𝜌 = 𝑚𝑎𝑥{8𝜅, 𝑒} and the learning rate 𝜂𝑡 = (2/𝜇(𝜌 + 𝑡)). 𝑒 is the 

local update epoch. 𝑟𝑘 is the weight of client 𝑘. Then, FEAT satisfies

𝐸 𝐹 ᪄𝑤𝑡 − 𝐹∗ ≤
𝜅

𝜌 + 𝑡

2(𝑃 + 𝑄)

𝜇
+
𝜇(𝜌 + 1)

2
𝐸 𝑤1 − 𝑤∗ 2

where

𝑃 = 𝛴𝑘=1
𝑁 𝑟𝑘

2𝜎𝑘
2 + 6𝐿𝛤 + 8(𝑒 − 1)2𝐺2, 𝑄 =

4

𝑑
𝑒2𝐺2

𝐹 = 

𝑘=1

𝑁

𝑟𝑘𝐹𝑘, 𝛤 = 𝐹∗ − 𝛴𝑘=1
𝑁 𝑟𝑘𝐹𝑘

∗.

Here, 𝐹∗ and 𝐹𝑘
∗ denote the minimal value of 𝐹 and 𝐹𝑘, respectively.



Evaluation
◼ Setup

❑ Dataset

◼ QUIC: contains traffic data from five Google Services

◼ ISCX: contains traffic data from 31 applications

❑ Heterogeneous Environment Setting

◼ Low heterogeneity: Dirichlet distribution with α uniformly sampled from [0, 0.2] and [0.2, 3]

◼ High heterogeneity: Dirichlet distribution with α uniformly sampled from [0, 0.1] and [0.1, 5]

❑ Benchmarks

◼ IID: upper bound baseline

◼ Random: random clients selection

◼ CMFL: client selection method that is based on sign counts

◼ WCL: select the clients based on their loss values
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Evaluation
◼ Results

❑ FEAT can improve the traffic classification accuracy to 68.6% in the environment 

with high heterogeneity compared to benchmarks

❑ FEAT can speed up the convergence by 2.6×and 1.9×compared to benchmarks
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Robust Federated Learning for Network Traffic 

Classification with Noisy Labels
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Noisy Labels in Network Traffic Classification

◼ Sources of Noisy Labels

❑ Non-expert labeling

❑ The existence of background unknown traffic flow during collection

◼ i.e., the traffic of a new application

◼ Impact of Noisy Labels

❑ Severely degrading the performance of learned model
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[Song et al. Learning from noisy labels with deep neural networks: A survey. IEEE TNNLS 2022.]

[Anderson et al. Machine learning for encrypted malware traffic classification: accounting for noisy labels and non-stationarity. ACM SIGKDD 2017]



Noisy Labels in Network Traffic Classification

◼ Existing Noise Elimination Methods

❑ Noise is detected and removed from the training process

❑ Simple to apply and perform well for data centres (i.e., Internet Ser-

vice Providers (ISPs)) with a large amount of traffic data

◼ Limitations

❑ May lead to poor performance of the learned network traffic classifier for 

mobile devices which generate a relatively small amount of traffic data

❑ Privacy leakage risk

◼ All the local traffic data is required to be collected to a central server for noise detection.
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Distributionally Robust Federated Learning for

Network Traffic Classification with Noisy Labels

◼ Motivation

❑ The data feature of the noisy labelled traffic data is clean

❑ The underlying true distribution of the noisy labeled data is statistically 

close to the clean traffic data

◼ Idea: Wasserstein Distributionally Normalization

❑ Transform noisy labeled data to be close to the clean traffic data

❑ Jointly take the transformed noisy traffic data and the clean traffic data 

into training
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Wasserstein Distributionally Normalization

◼ Three steps

❑ Local dataset partitioning

◼ Partition the local traffic data in each client into

certain clean data and uncertain noisy data

❑ Global clean data distribution estimation

◼ Estimate the global clean data distribution

based on the uploaded local data distribution

❑ Distributional normalization

◼ Normalize the uncertain noisy data to be close

to the clean data distribution
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Step 1: Local dataset partitioning

◼ Small-loss criteria

❑ The loss value of a noisy labeled data sample is larger than a clean data sample

◼ Smaller the loss value of a data sample, the higher the probability of being clean

❑ Let ζ be the loss threshold, and 𝒟𝑐 be the certain clean data set

The Hong Kong Polytechnic University 28



Step 2: Global Clean Data Distribution Estimation

◼ Federated distribution estimation

❑ The local clean traffic data is located in each client and can not be sent to the 

server due to privacy concerns

❑ Each client estimates the local distribution 𝑏𝑖 of the certain traffic dataset 𝒟𝑖
𝑐

and sends it to the server

❑ The server constructs the virtual observations according to the local 

distributions and then estimates the global distribution 𝑔(𝑒)

❑ We leverage the Markov Chain Monte Carlo with a delayed rejection to solve

the problem
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Step 3: Distributional Normalization

◼ Wasserstein certified robust region construction

❑ A ball of radius 𝜖 around the certain clean traffic data distribution 𝜉

❑ Each probability distribution in the certified robust region is statistically close

to the probability distribution of the certain clean traffic data set
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𝜉
𝜖

𝔹∈(𝜉)
Definition. (Wasserstein certified robust region) Let 𝒫2 be the distribution space. 

We define the certified robust region 𝔹𝜉(𝜖) in this space as follows:

𝔹𝜉(𝜖) = 𝜍 ∈ 𝒫2:𝑊2(𝜍, 𝜉) ≤ 𝜖



Step 3: Distributional Normalization

◼ Distributional normalization function specification

❑ The normalization function ℱ should ensure the normalized probability 

distribution ƶ𝜔 = ℱ(𝜔) is lying in the certified robust region 𝔹𝜉(𝜖)

❑ ℱ is defined as the gradient flow in Wasserstein-2 space
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Definition. (Wasserstein normalization function) Let ℱ be the distributional normalization function 

which transforms probability distribution 𝜔 to 𝜔𝑡, and ℱt 𝜔 = 𝜔𝑡. We define ℱ as a gradient flow 

in the Wasserstein-2 space and 𝜔𝑡 satisfies the following continuity equation :
𝜕𝜔𝑡

𝜕𝑡
= ∇ ⋅ 𝜔𝑡𝑣𝑡

where 𝑑𝜔𝑡 = 𝑝𝑡𝑑𝒩𝜉 , 𝑑𝒩𝜉 = 𝑑𝑞𝑡𝑑𝑥, 𝑣𝑡 = ∇log 𝑞𝑡. Here, 𝑝𝑡 and 𝑞𝑡 are probability density functions, and 

𝒩𝜉 is a Gaussian distribution with mean 𝐦𝜉 and covariance Σ𝜉.

Steepest decent direction to maximize the distance



Step 3: Distributional Normalization

◼ Distributional normalization function specification

❑ The gradient flow in the Wasserstein-2 space is also the Fokker-Planck equation

❑ Obtaining the normalized data distribution by solving the following stochastic 

differential equation (SDE)

◼ Euler-Maruyama scheme can be used to simulate the stochastic process 𝑋𝑡
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Robust Federated Network Traffic Classifier 

Learning Algorithm

◼ RFNTC algorithm: two-stage learning

❑ Wasserstein distributional normalization stage

❑ Federated learning stage
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Theoretical Analysis

◼ Concentration Analysis

❑ The noisy labeled uncertain traffic data is proved to be normalized to the 

certified robust region
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Lemma 1. Let Assumption 1 holds, and 𝜋 is the Lipschitz constant of softmax function s. 

There exists a constant 𝜎 satisfy the following probability inequality:

ℱ𝑇 𝜔 𝑧: 𝑠 𝑋𝑇 𝑧 − 𝔼𝜉 𝑠 ≥ 𝜎 ≤ 6𝑒
−
2𝐶

3
2

𝐾2 ,

where 𝜔 and 𝜉 denote the uncertain and certain probability distributions, respectively, 

and 𝐶 =
𝜎

𝜋
.



Theoretical Analysis

◼ Robustness Analysis

❑ The distance of the loss value between the learned model and the optimal 

model is bounded
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Theorem 1. Let Assumptions 1 to 5 hold and 𝐸 is the number of local iterations. Let 

𝜅 =
𝐿

𝜇
, 𝛾 = 𝑚𝑎𝑥{8𝜅, 𝐸} and 𝛥0 = 𝔼 𝜃0 − 𝜃∗ 2

. We have

𝔼 𝓁 𝜃𝐾 − 𝓁∗ ≤
𝜅

𝛾 + 𝐾 − 1

2𝐵

𝜇
+ 4𝐿𝛥0 ,

where

𝐵 =

𝑖=1

𝑁
𝜎𝑖
2

𝑁2
+ 6𝐿𝛤 + 8(𝐸 − 1)2𝐺2



Evaluation

◼ Setup

❑ Dataset

◼ ISCXVPN2016: There are 17 applications belonging to 7 application categories in this 

dataset, and we pre-process the PCAP format traffic data with CICFlowMeter tool.

❑ Traffic Classification Model

◼ A CNN-based network traffic classifier

❑ Benchmarks

◼ FedAvg (AVG): baseline

◼ ROLC-NC-D: a centralized robust traffic classification method

◼ ROLC: a federated version of ROLC-NC-D
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Evaluation

◼ Results

❑ The proposed RFNTC algorithm can improve the accuracy of the learned 

model for up to 1.05 times compared to benchmarks
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Evaluation

◼ Results

❑ The proposed RFNTC algorithm improves the accuracy of the learned 

classifier by 0.5 times even when a large noisy clients ratio occurs (i.e., the 

fraction of noisy clients is 0.5), 
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Conclusion
◼ Federated learning is a promising paradigm for traffic classification

◼ FEAT: network traffic classification in heterogeneous environment

❑ Theoretically guaranteed Skewness estimation: Hoeffding’s Inequality

❑ Robust client selection: dueling bandit and quality & quantity parameter

◼ RFNTC: network traffic classification with noisy labels

❑ Privacy-preserving global distribution estimation: federated analytics

❑ Theoretically guaranteed distribution normalization: Wasserstein

distributional normalization

◼ Extensive evaluation results present the superior performance of

the proposed methods
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Thank you!

Q&A
Email: dan.wang@polyu.edu.hk
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