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‘ Background

= Network Traffic Classification

o ldentifying the type or class of traffic flowing over a network

o A foundation for many network security and network management applications
o Applications: traffic engineering, network monitoring, Quality of Service

Platforms / Service Providers
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Background Q/g‘/b

Methods

o Traditional network traffic classification methods
Port-based methods } Less effective for dynamic port numbers or encrypted data
Payload-based methods

o Deep learning

A large amount of labelled traffic data is required for learning

Privacy leakage risk of raw data in each client
0 i.e., traffic data related to the user behavior
Lack of scalability

0 Transferring all this data to a central server for processing can be inefficient and
may not scale well
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‘ Background

= Federated learning
o Introduced by Google in 2017
o A promising learning paradigm proposed to protect user data privacy
o Collaboratively learn a model vyhile keeping all the data in local ,“
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‘ Background

= Federated learning

o Introduced by Google in 2017
o A promising learning paradigm proposed to protect user data privacy

_______

= Global model distribution !
= Local training
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‘ Background Nt

= Federated learning
o Introduced by Google in 2017
o A promising learning paradigm proposed to protect user data privacy
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Challenges ot Applying Federated Learning &

Heterogeneity < First work |

o Participating clients can have significant differences in terms of their
computational resources, network connectivity, availability , and the
amount of the data they have.

Resilience to noisy data  Second work |
o Data noise (i.e., noisy labels) occurred during learning

Communication Overhead
o Frequent communication between the central server and the client devices

System Design and Management
o Coordinating across many devices, handling device failures or dropouts
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A Federated Approach for Network Tratfic

Classification in Heterogeneous Environments
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: 22
‘ Heterogeneous Environments 5

= Device Heterogeneity

Device heterogeneity (e.g. clients that have limited resource and are likely to drop) hinders
the convergence of federated optimization

90% stragglers
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[Li et al, Federated optimization in heterogeneous networks, MLSys 2020]
[Kairouz et al, Federated learning tutorial, NeurIPS 2020]
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Heterogeneous Environments

= Data Heterogeneity

o Class distribution of the client data 1s skewed

Data heterogeneity (Non-IID data partition) leads to lower FL accuracy and slower

convergence

TABLE 1

CLASSIFICATION ACCURACY WITH FL IN HETEROGENEOQUS

ENVIRONMENTS

Non-II1D Environment

IID Environment

Low Heterogeneity High Heterogeneity
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[Zhao et al, Federated learning with non-11D data, arxiv]
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‘ FEAT: A Federated Approach for Network Tra@

Classification in Heterogeneous Environments
= Motivation

o Clients with different skewness are not equally beneficial to federated learning
= Skewness: the severity of data heterogeneity

= ldea: heterogeneity-aware client selection
o Measure the skewness of the clients /
o Select clients with low skewness / LLLLLLLL
—

High skewness
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. . . R
Heterogeneity-aware Client Selection &2

Three steps
o Insight generation

Clients generate insights about the skewness of its

local data
o Skewness generation

Server aggregates the insights and infer about client

skewness
o Chient selection

Server selects the participating clients based on the

skewness estimation
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Heterogeneity-aware Client Selection

Challenges

Step 1: Insight generation

The insight should be
informative about the client
skewness

The insight should be indirect
to protect raw data privacy

Step 2: Skewness estimation

* It should derive useful
knowledge from the indirect
insights

* The procedure should be
mathematically sound

Step 3: Client selection

« The selection should be
robust to the system
uncertainty

« The selection should satisfy

requirements of the host
tasks

The Hong Kong Polytechnic University
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Step 1: Insight Generation Nt

The Insight generation Is formulated as gradient descent
o Weight change of the neural network is used as insight

Consistent to its host task, federated learning

Benefits:

o Do not need to install new computation scheme on the clients
o Reuse the model distribution of FL, and reduce communication
o Preserve the privacy protection level as FL
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Step 2: Skewness Estimation @

Key Idea: gradient (weight) from one client Is the average of
gradient derived by each individual data of the client

—> Gradient derived by one datum
—>» Gradient of the client
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Step 2: Skewness Estimation (5

Hoeffding’s inequality
o Provides possibility bound of average values diverging from their exception

Hoeffding's inequality: Supposed X, ..., X,, are independent variables, X; € [a;, b;], X is the average of

X;, there's
2

(l ( )l = ) < ( n lz )
Pr(|X — E(X = € ZeX[)
i_—1( [ ai)z

Result of skewness estimation: higher R; indicates lower skewness

Denote Aw; as the uploaded gradient from client i, and Aw as the average of uploaded gradients among
all participating clients, there’s

R; = —llAw; — Aw||;
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Step 3: Client Selection Nt

Client selection i1s formulated as a multi-bandit dueling problem
o Dueling bandit design

Participating client “duel” with each other using their rewards
Train the bandit using the dueling results

L] L] L]

R; = —2 R = -3 Ry = —10

win = 2,lose = 0 win = 1,lose =1 win = 0, lose = 2
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Step 3: Client Selection Nt

Client selection i1s formulated as a multi-bandit dueling problem

o Thompson Sampling based Clients Selection
There are N clients at all, and M participants in each round
The bandit find A -N clients with low skewness to form a candidate pool
Then randomly draw M from the candidate pool as participants

o A Is designed for the tradeoff between selecting the clients with low skewness
and providing the training model with more raw traffic data samples.

High skewness High skewness
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Theoretical Analysis N

Convergence Analysis

o The distance of the loss value between the learned model and the optimal
model is bounded

Theorem 2. Let k = (L/u), p = max{8k, e} and the learning rate n, = (2/u(p +t)).e is the
local update epoch. 7, is the weight of client k. Then, FEAT satisfies

E[F(w)] - F* <~ i t <Z(P: D, “(p; D Elw, - w*nZ)

where

4
P =X rfcf + 6L +8(e — 1)2G?,Q = EeZGZ

N
F = z 1eFi, T = F*— XN _ 1. Fp.
k=1
Here, F* and F;, denote the minimal value of F and Fj, respectively.
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Evaluation
Setup

o Dataset
QUIC: contains traffic data from five Google Services
ISCX: contains traffic data from 31 applications
o Heterogeneous Environment Setting
Low heterogeneity: Dirichlet distribution with o uniformly sampled from [0, 0.2] and [0.2, 3]
High heterogeneity: Dirichlet distribution with o uniformly sampled from [0, 0.1] and [0.1, 5]

o Benchmarks
11D: upper bound baseline
Random: random clients selection
CMFL.: client selection method that is based on sign counts

W(CL.: select the clients based on their loss values
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Evaluation QS

Results

o FEAT can improve the traffic classification accuracy to 68.6% in the environment
with high heterogeneity compared to benchmarks

o FEAT can speed up the convergence by 2.6x and 1.9x compared to benchmarks

TABLE II TABLE III
COMPARISON OF ACCURACY UNDER DIFFERENT METHODS ON QUIC COMMUNICATION ROUNDS NEEDED TO REACH 80% OF
TARGET ACCURACY UNDER DIFFERENT METHODS

Heterogeneity | Methods | Accuracy (%) | Improvement (%)

Heterogeneity | Methods | Rounds to 80% | Speedup

Accuracy
e e
o -]
%H\"-
Accuracy

0.4 . 11D 95.5 100.0
' 2
I — — . Random 88.0 0.0 b 12 1.8x
oW _
0.2 ] — FEAT 0.2 — FEAT CMFL 86.7 173 Low Random 56 2.6x
Random Random CMFL 41 -1.9x
o . . —CMFL 0 —CMFL FEAT 93.0 66.7
0 50 100 150 200 0 50 100 150 200 D 955 100.0 FEAT 22 1.0x
Step Step - '
(a) (b) Hieh Random 837 0.0 1D 12 1.9
g a -3.
CMFL 84.7 91 High Random 79 3.4x
_ _ o N FEAT 91.8 68.6 CMFL 40 -L7x
Fig. 3. Accuracy under environments with different heterogeneities on QUIC. FEAT 23 1.0x

(a) Low heterogeneity. (b) High heterogeneity.
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Robust Federated Learning for Network Traffic
Classification with Noisy Labels




Noisy Labels in Network Traffic Classification <8

= Sources of Noisy Labels

o Non-expert labeling

o The existence of background unknown traffic flow during collection
= l.e., the traffic of a new application

= Impact of Noisy Labels
a Severelv dearadina the performance of learned model

100% 100%
Noisy w/o. Reg
- isv w
g 75% . 75% oy B
< 50% S 50% .
£ <
g 250/, No?syw;‘o. Reg. § 250,
= Noisy w. Reg.
== (Clean w. Reg
0% 0%
1 30 60 90 120 1 30 60 90 120
Epochs

Epochs
[Song et al. Learning from noisy Iabelspwith deep neural networks: A survey. IEEE TNNLS 2022.]
[Anderson et al. Machine learning for encrypted malware traffic classification: accounting for noisy labels and non-stationarity. ACM SIGKDD 2017]
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Noisy Labels in Network Trattic Classification Q/'g‘/b

Existing Noise Elimination Methods

o Noise Is detected and removed from the training process

o Simple to apply and perform well for data centres (i.e., Internet Ser-
vice Providers (ISPs)) with a large amount of traffic data

Limitations

o May lead to poor performance of the learned network traffic classifier for
mobile devices which generate a relatively small amount of traffic data

o Privacy leakage risk
All the local traffic data is required to be collected to a central server for noise detection.
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Distributionally Robust Federated Learning for &
Network Traffic Classification with Noisy Labels

Motivation

o The data feature of the noisy labelled traffic data is clean

o The underlying true distribution of the noisy labeled data is statistically
close to the clean traffic data

|dea: Wasserstein Distributionally Normalization

o Transform noisy labeled data to be close to the clean traffic data

o Jointly take the transformed noisy traffic data and the clean traffic data
Into training
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Wasserstein Distributionally Normalization

Three steps

o Local dataset partitioning

Partition the local traffic data in each client into
certain clean data and uncertain noisy data

o Global clean data distribution estimation

Estimate the global clean data distribution
based on the uploaded local data distribution

o Distributional normalization

Normalize the uncertain noisy data to be close
to the clean data distribution

The Hong Kong Polytechnic University
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Step 1: Local dataset partitioning &

Small-loss criteria

o The loss value of a noisy labeled data sample is larger than a clean data sample
Smaller the loss value of a data sample, the higher the probability of being clean

0 Let ¢ be the loss threshold, and D¢ be the certain clean data set
D ={(x, »t(x,0,y) < {;(x,y) € D},
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Step 2: Global Clean Data Distribution EstimatiGe®

Federated distribution estimation

o The local clean traffic data Is located In each client and can not be sent to the
server due to privacy concerns

o Each client estimates the local distribution b; of the certain traffic dataset D;
and sends It to the server

o The server constructs the virtual observations according to the local
distributions and then estimates the global distribution g(e)

N
g(e) = Z wi;(e;),
i-1

— ——{ Gaussian kernel

o We leverage the Markov Chain Monte Carlo with a delayed rejection to solve
the problem
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Step 3: Distributional Normalization QS

Wasserstein certified robust region construction
o A ball of radius e around the certain clean traffic data distribution &

Definition. (Wasserstein certified robust region) Let P, be the distribution space.
We define the certified robust region B (¢) in this space as follows: Be(¢)

Bs(e) = {¢c € Pp:W5(5, &) < €}

o Each probability distribution in the certified robust region is statistically close
to the probability distribution of the certain clean traffic data set
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. o e,
Step 3: Distributional Normalization (5

Distributional normalization function specification

o The normalization function F should ensure the normalized probability
distribution @ = F(w) 1s lying In the certified robust region B¢ (€)
sup Wa(¥F (w),§) < e.

'F(w) ~| Steepest decent direction to maximize the distance

(S — |

o F is defined as the gradient flow in Wasserstein-2 space

Definition. (Wasserstein normalization function) Let F be the distributional normalization function
which transforms probability distribution w to w,, and F(w) = w;. We define F as a gradient flow

In the Wasserstein-2 space and w; satisfies the following continuity equation :

dw
a_t =V (wvr)
t
where dw; = pdNg, dN; = dq.dx, v, = Vlog q,. Here, p, and q, are probability density functions, and

Ng 1s a Gaussian distribution with mean m; and covariance X
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. o .
Step 3: Distributional Normalization (5

Distributional normalization function specification
o The gradient flow in the Wasserstein-2 space is also the Fokker-Planck equation

UL 9 (o, 0TV @), p(0,x) = poe).

o Obtaining the normalized data distribution by solving the following stochastic
differential equation (SDE)
dX; = -V (X;mg) dt + 21712 dW,, Xy ~ po,
Euler-Maruyama scheme can be used to simulate the stochastic process X;
X1 = X, = Vg (Ximg) A, + {20714, 2 Z,
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Robust Fec

erated Network Traffic Classifier @

Learning Al

oorithm

RFENTC algorithm: two-stage learning

o Wasserstein distributional normalization stage s Server
- Global distribution Model
o Federated learning stage estimation aggregation |
A
@ Local @ Global @ Local model
Client i distribution distribution uploading
uploadin Jproadcasing |~
> . 0 5 : :
— Distributional P
U7 normalization i %‘ i ©S'?bal
Dataset I (| moael
SaDrtitioning i | + i broadcasting
| - |
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. — Rtind —
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== Certain known data ™= Uncertain unknown data

wm Uncertain known data Normalized known data
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Theoretical Analysis

Concentration Analysis
o The noisy labeled uncertain traffic data is proved to be normalized to the
certified robust region

Lemma 1. Let Assumption 1 holds, and m is the Lipschitz constant of softmax function s.
There exists a constant o satisfy the following probability inequality:

Fr(0)({z: |s(Xr(2)) — Eels]| = o)) < 6e VEe,
where w and & denote the uncertain and certain probability distributions, respectively,

and C = <.

T

The Hong Kong Polytechnic University
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Theoretical Analysis N

Robustness Analysis

o The distance of the loss value between the learned model and the optimal
model is bounded

Theorem 1. Let Assumptions 1 to 5 hold and E is the number of local iterations. Let
K= ﬁ,y = max{8k, E}and 4, = E|l6, — H*IIZ. We have

K 2B
E[£(0)] — ¢ < TR = 1(# +4LAO),

where
2

oy 2,2
B = — + 6L+ 8(E — 1)“G

N
N2
=1

l
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Evaluation RS
Setup

o Dataset

ISCXVPN2016: There are 17 applications belonging to 7 application categories in this
dataset, and we pre-process the PCAP format traffic data with CICFlowMeter tool.

o Traffic Classification Model
A CNN-based network traffic classifier

o Benchmarks
FedAvg (AVG): baseline
ROLC-NC-D: a centralized robust traffic classification method
ROLC: a federated version of ROLC-NC-D
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Evaluation N>

Results

o The proposed RFNTC algorithm can improve the accuracy of the learned
model for up to 1.05 times compared to benchmarks

-= |deal —+ ROLC == RFNTC -= |deal —- ROLC == RFNTC == |deal —-+ ROLC -= RFNTC
= AVG ==+« RFNTC-no-WDN = AVG +--+ RFNTC-no-WDN = AVG ==+ RFNTC-no-WDN
E 1.0 E 1.0 § Wo————717 T
5 0.8 Jozzzz==z=====z=zmzzz====1| 5 0.8 _oooizzTIIEIEEIIIIIE| S 081 e
< 0'6_5:.53:‘;:%%._-_. <061 ,557’”,._ ________ — === < 0.6',{’_?;::.".;'.-'2'.;‘:'_'_“. ..................
©0.41 0.4 0.4 1=
- - = —
= 0.2 = 0.21 = 0.2
3 0.0 - | - J 3.0 | , , J 30,0 | | | |
=0 25 50 75 100 — 770 25 50 75 100 — 70 25 50 75 100

Communication Round Communication Round Communication Round
(@) Non-IID (a = 0.3) (b) Non-IID (@ =1.0) (c) IID

Fig. 2: The accuracy of the learned network traffic classifier with different training methods.
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‘ Evaluation

= Results

o The proposed RFNTC algorithm improves the accuracy of the learned
classifier by 0.5 times even when a large noisy clients ratio occurs (i.e., the

fraction of noisy clients is 0.5),

BE p=0.2 (3 p=0.3 p=0.4 B p=0.5 BEE p=0.2 32 p=0.3 p=0.4 & p=0.5 BE p=0.2 [ p=0.3 3 p=04 & p=0.5

.. 1.0 210 .10
U U (.}
©0.8 ©0.8; ©o08  _ Hm=m
> > > _— _
0 0.6 Soel  mepme S 0 0.6] = i
< < - R < i35 8 -
204 2041 R RS R SR
g02 go21 B o o2 B
= 0.0 e & = 0.0/ HE R e B Y e = 0.0 e HEH b 2% DO

' AVG ROLC RFNTC-no-WDNRFNTC ' AVG ROLC RFNTC-no-WDNRFNTC ' AVG ROLC RFNTC-no-WDNRFNTC

Training Method Training Method Training Method
(@) Non-IID (a = 0.3) (b) Non-IID (@ = 1.0) (c) IID

Fig. 3: Top-1 accuracy of different training methods with various noisy client ratios (from 0.2 to 0.5).
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Conclusion (5

Federated learning is a promising paradigm for traffic classification

FEAT: network traffic classification in heterogeneous environment
o Theoretically guaranteed Skewness estimation: Hoeffding’s Inequality

o Robust client selection: dueling bandit and quality & quantity parameter
RFENTC: network traffic classification with noisy labels
o Privacy-preserving global distribution estimation: federated analytics

o Theoretically guaranteed distribution normalization: Wasserstein
distributional normalization

Extensive evaluation results present the superior performance of
the proposed methods
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Thank youl

Q&A
Email: dan.wang@polyu.edu.hk

The Hong Kong Polytechnic University

40



