Joint Research on IPv4/IPv6 Network Management: Research Development and Demonstration

AfgREN

BdREN

CamREN

LEARN

Mae Fah Luang University

MYREN

NREN

PERN

SingAREN

TEIN*CC

ThaiREN

Yangon

University of Computer Studies,

University of Gottingen

University of Malaya

University of Surrey

Beijing University of Posts and Telecommunications

Engineering, CAS

The Department of Computing (COMP), the Hong Kong Polytechnic University

UESTC

E-Hualu

Shandong University

Content

- Project Outline
- Work Progress Report
- Future Work

Project Web Site:

https://cgtf.net

International Cooperation

14 countries, 23 research organizations

Excellent Mix of Key Experiences of IPv4/IPv6 Network Management

13 research organizations from 11 Asian countries

TEIN*CC

SingAREN, Singapore

ThaiRen, Thailand

MYREN, Malaysia

LEARN, Sri Lanka

NREN, Nepal

PERN, Pakistan

BdREN, Bengal

CamREN, Cambodia

AfgREN, Afghanistan

University of Computer Studies, Yangon,

Myanmar

University of Malaya, Malaysia

Mae Fah Luang University, Thailand

2 research organizations from European countries

University of Gottingen, Germany University of Surrey, UK

8 Chinese research

organizations

Tsinghua University

BUPT

CAS

Bit-Way

Shenzhen Research Institute, HKPU

UESTC

Shandong University

eHualu

Promote Network Technology Innovation and Application Demonstration

Project Plan & Schedule

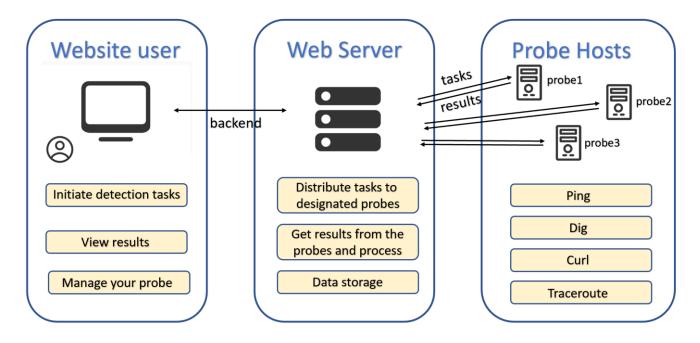
End of project Start **Mid-term** 2021.12 2020.6 2023.6 Develop prototype Investigate Integrate Collaborative and systems, and prototype and design systems, and do Management demonstration **Architecture Model** demonstration and for IPv6 Cyberspace evaluation and other key technologies 2nd year 3rd year 1st year **Prototype and Breakthrough key Demonstration** systems

technologies

Working Group

WGs Organization	Passive Traffic Measurement	Active Probe	Network Looking Glass	BGP Routing Info Sharing/Monitoring	Network Telescope	International Rules of Cyber Governance(IRCG)
SingAREN		√	√	\checkmark		\checkmark
ThaiRen	√	√	√	√	√	√
LEARN	√	√	√	√	√	√
BDREN	√	√	√	√	√	√
MYREN		√	√	√		√
AfgREN			√	√	√	√
NREN						√
CAMREN						√
PERN						√
Yangon University of Computer Study						√
University of Malaya						\checkmark
Mae Fah Luang University,Thailand						√
University of Gottingen	√					\checkmark
Surrey University	√			√		√

Work Progress

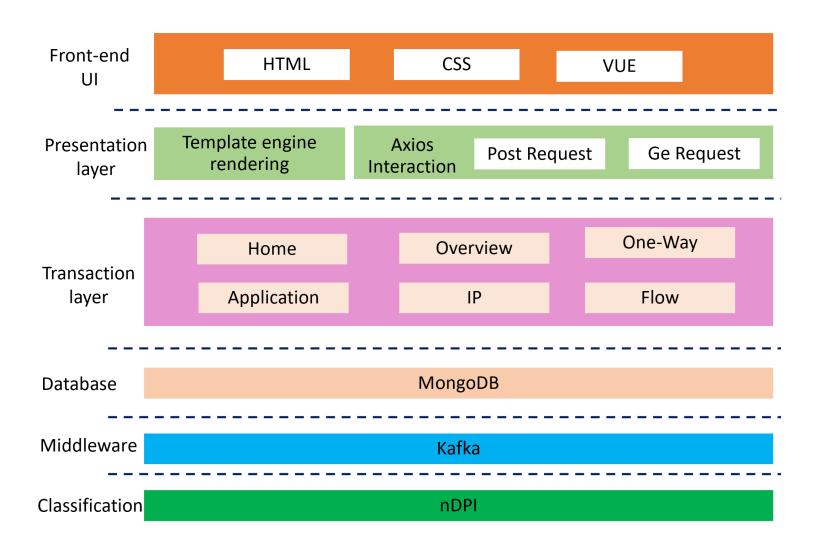

Project Web Site: https://cgtf.net

Progress In the Following Aspect:

- Active Probe Platform—GPerf
- Passive Traffic Measurement—FlowWatch
- Network Looking Glass—CGTF LG
- BGP Routing Sharing —CGTF RIS
- BGP Routing Monitoring and Analysis BGPWatch

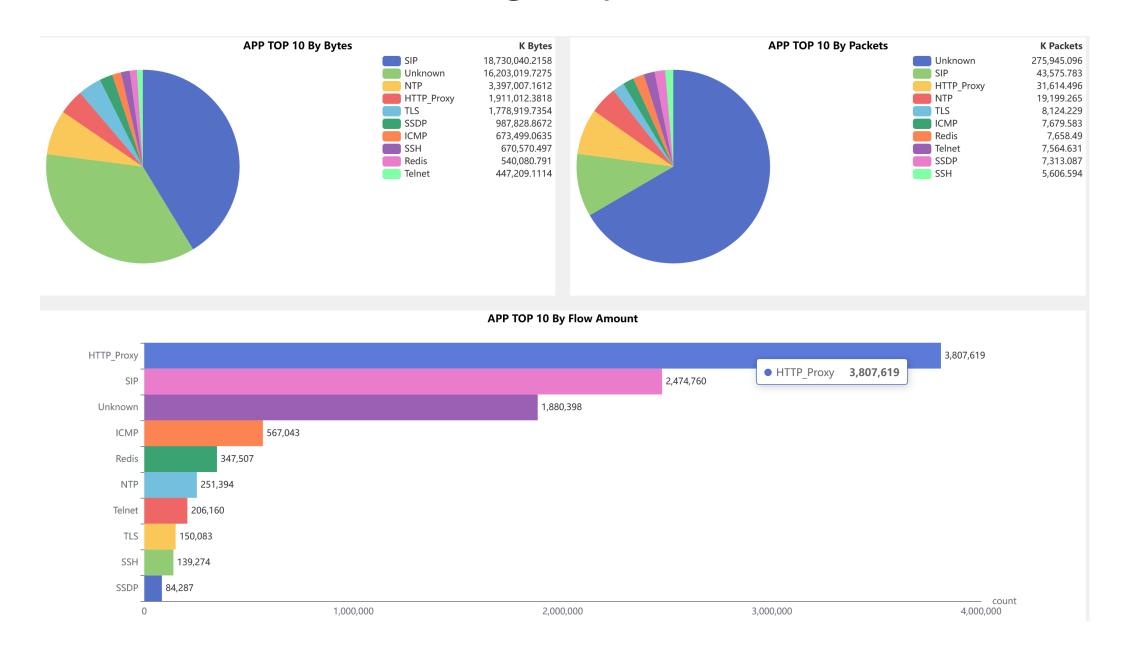
What is GPerf?

- ➤ An active Internet measurement platform
 - Mechanism: Initiate detections through several deployed probes
 - Target: Domain names on the Internet
 - Purpose: Obtain and visualize periodic results
- > Functions provided
 - a) ping
 - b) dig
 - c) curl
 - d) traceroute
- > Supports both **IPv4** and **IPv6**


Available Probe list

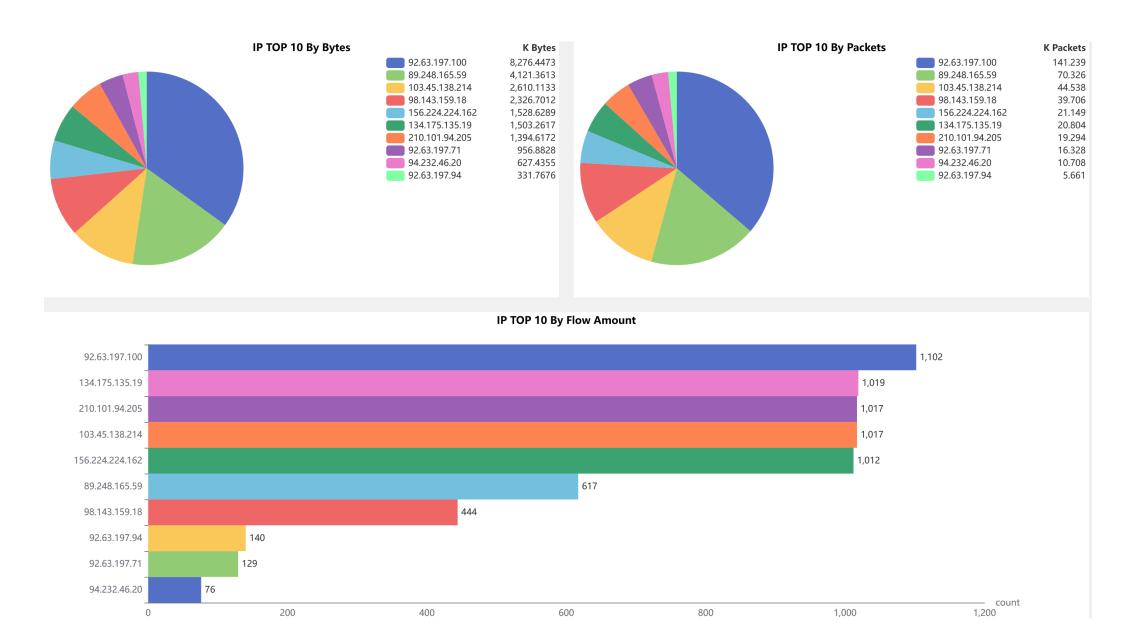
robe		××					Probe:18	From 14 Country, 17 City
	Status	Probe name	IPv4 Address	IPv6 Address	Country	City	Total Task	Option
1		LEARN-Probe	192.248.3.218	2401:dd00:1:1:5054:ff:fe32:e3b2	Srilanka	Colombo	12	
2	\bigcirc	ThaiREN	202.28.194.7	N/A	Thailand	Bangkok	4	
3	⊘	Tsinghua1	203.91.121.239	2001:da8:217:1213::239	China	Beijing	0	
4	⊘	SingAREN-SOE-1	203.30.39.26	2001:df0:21a:0:20c:29ff:fe56:5098	Singapore	Singapore	8	
5	\bigcirc	TS-BJ-ali	101.200.124.121	2408:400a:69:cd00:3061:7f23:24a4:85f3	China	Bejing	404	
6	⊘	BdREN	103.157.134.4	N/A	Bangladesh	Dhaka	32	
7		TS-JP-ali	8.209.254.12	N/A	Japan	Japan	144	
8	⊘	TS-SG-ali	8.222.162.223	240b:4000:b:db00:8106:7413:738f:f1ee	Singapore	Singapore	708	
9	\bigcirc	TS-GB-ali	8.208.87.165	N/A	United Kingdom	london	284	
10		TS-US-ali	47.251.15.44	N/A	United States	silicon valley	140	

Result Details



Traffic Measurement System

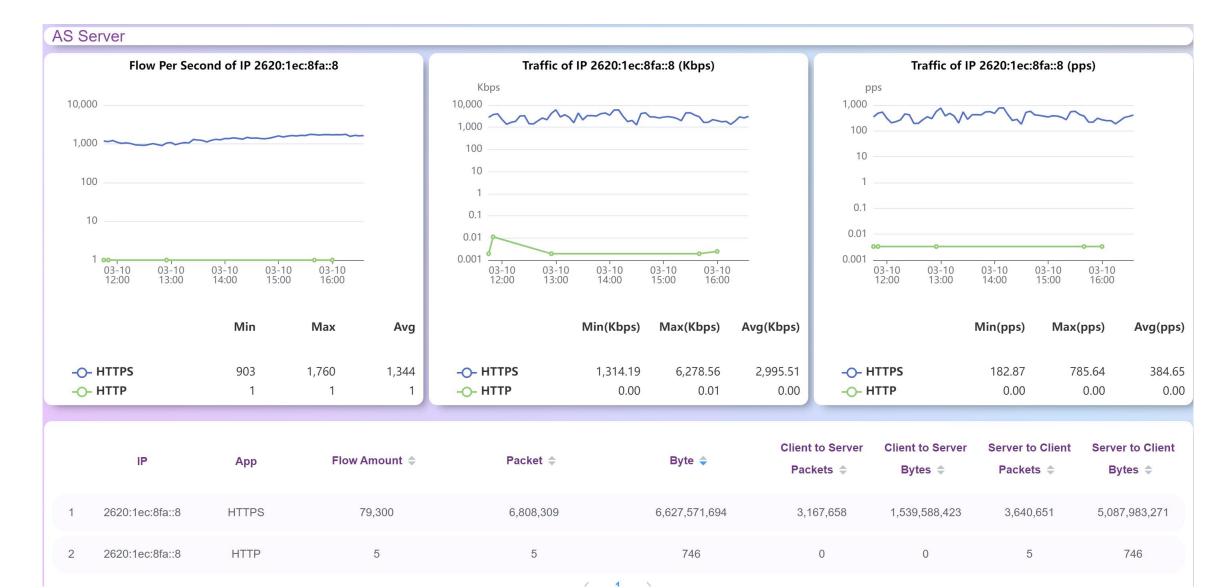
- Input: rawpacket or netflow traffic
- Classify traffic into application by nDPI
- Distribution data by Kafka to deal with high traffic
- Aggregate and do statistics on the data
- MongoDB can be clustered to deal with high traffic


TOP 10 APP

Statistics of Each APP

TOP 10 IP

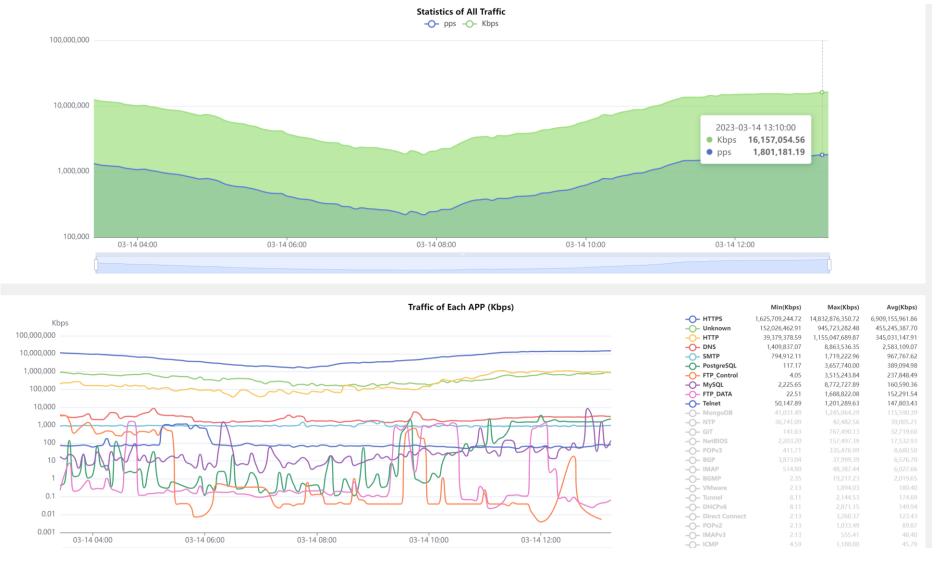
Detail of Application



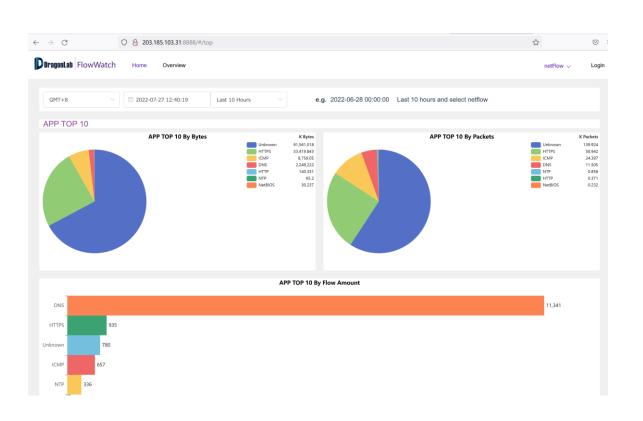
App Name	Flow Amount \Leftrightarrow	Packet ≑	Byte ≑	Client to Server	Client to Server	Server to Client Packets	Server to Client Bytes \$
Unknown	79,671,262	404,375,915	325,154,832,723	150,388,395	146,071,958,770	253,987,520	179,082,873,953
<u>HTTPS</u>	46,734,483	341,152,151	323,457,986,096	131,683,047	138,337,456,479	209,469,104	185,120,529,617
HTTP	9,593,061	56,535,016	49,636,307,557	21,585,427	19,033,288,587	34,949,589	30,603,018,970
DNS	11,761,847	11,939,761	2,127,762,173	95,220	24,595,298	11,844,541	2,103,166,875
NTP	671,172	677,719	74,441,822	2,334	258,044	675,385	74,183,778
SMTP	10,108	37,327	29,738,475	13,928	14,573,013	23,399	15,165,462
<u>IMAP</u>	10,342	37,757	12,405,665	13,766	6,616,229	23,991	5,789,436
GIT	474	5,726	4,809,469	2,595	2,387,729	3,131	2,421,740
POPv3	1,378	5,306	3,858,950	2,208	2,827,843	3,098	1,031,107
MySQL	7,289	10,817	2,775,345	459	92,747	10,358	2,682,598
Telnet	5,952	11,654	1,970,722	1,129	219,182	10,525	1,751,540
BGP	2,897	5,498	1,258,347	961	409,303	4,537	849,044
PostgreSQL	2,532	4,346	654,021	119	46,935	4,227	607,086

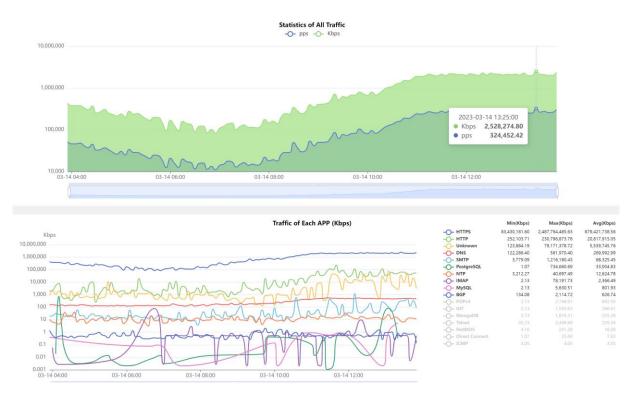
	Client IP	Flow Amount \$	Packet \$	Byte 💠	Client to Server Packets \$	Client to Server Bytes	Server to Client Packets	Server to Client Bytes
1	2001:1900:2380:a07::1fe	6	10,791	11,449,329	3,574	334,278	7,217	11,115,051
2	2001:1900:2380:d03::1fe	12	4,732	4,734,608	1,691	161,345	3,041	4,573,263
3	2001:1900:2306:6f05::1fe	2	4,128	4,313,775	1,461	119,472	2,667	4,194,303
4	2001:1900:2380:e03::1fe	10	3,416	3,424,087	1,149	108,597	2,267	3,315,490
5	2001:1900:2380:e00::1fe	1	3,465	3,085,214	1,525	149,202	1,940	2,936,012
6	2001:1900:2306:4f0b::1fe	2	2,720	2,802,674	912	76,378	1,808	2,726,296
7	2001:1900:2306:8f09::1fe	1	1,481	1,619,116	478	46,252	1,003	1,572,864
8	2001:1900:2306:302d::1fe	3	1,380	1,354,882	478	44,978	902	1,309,904
9	2001:1900:230f:e00::1fe	1	1,234	1,296,958	403	38,667	831	1,258,291
10	2001:1900:2306:8f0b::1fc	2	370	339,645	144	11,881	226	327,764

(1 2 3 4 5 6 ... 9 >


Detail of IP

Detail of Flow


Арр	Client IP	Server IP	First Seen <i></i>	Last Seen ♣	Server Port	Client Port	Client to Server	Client to Server bps	Server to Client	Server to Clien
HTTPS	2620:1ec:8fa::8	2001:da8:201:1 085:111c:fa9e:8 72c:c356	2023-03-11 01:55:10	2023-03-11 01:59:54	49938	443	17.4533	215,307.6	16.93	10,256.6933
<u>HTTPS</u>	2620:1ec:8fa::8	2001:da8:e000: a015::2:11be	2023-03-11 10:54:31	2023-03-11 10:58:44	64552	443	9.1133	111,848.1067	6.0167	3,592.0533
HTTPS	2620:1ec:8fa::8	2001:da8:d800: 172:5440:1b02: a414:6d8	2023-03-11 01:55:24	2023-03-11 01:56:12	9555	443	8.45	103,459.4933	5.0067	3,031.7867
HTTPS	2620:1ec:8fa::8	2001:da8:d800: 172:5440:1b02: a414:6d8	2023-03-11 01:55:27	2023-03-11 01:56:11	9556	443	7.8367	97,867.0933	4.9467	3,038.4
<u>HTTPS</u>	2620:1ec:8fa::8	2001:250:1001: a008::3:8f7b	2023-03-11 09:54:35	2023-03-11 09:59:11	1144	443	7.4533	92,274.6667	4.6567	2,824.16
HTTPS	2620:1ec:8fa::8	240c:ca02:216 9:35c:a43e:c83 e:e233:e4f9	2023-03-10 22:56:35	2023-03-10 22:57:02	55092	443	4.6433	58,720.24	1.9033	1,135.7333
HTTPS	2620:1ec:8fa::8	240c:c001:100 7:e3b7:ad2d:20 83:92e9:46ca	2023-03-10 22:55:14	2023-03-10 22:57:19	11007	443	3.0833	39,146.8267	2.79	1,795.0933
HTTPS	2620:1ec:8fa::8	240c:ca04:210 1:23b:a09e:9d8 5:49b5:d8a	2023-03-10 12:56:53	2023-03-10 13:00:01	24938	443	2.4	30,758.2133	2.3733	1,516.3733


Deployed at BDREN

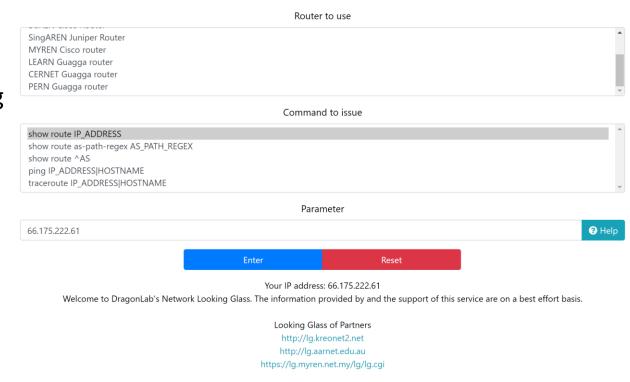
BDREN, throughput reaches 10Gbps

Deployed at ThaiREN and LEARN

ThaiREN

LEARN

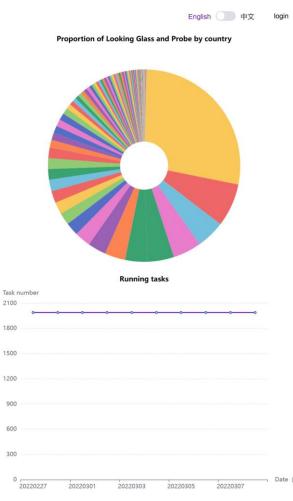
CGT


CGTF Looking Glass

- Open Source:
 - https://github.com/gmazoyer/looking-g
- 5 commands
- Query speed limit for security
- More partners is welcomed

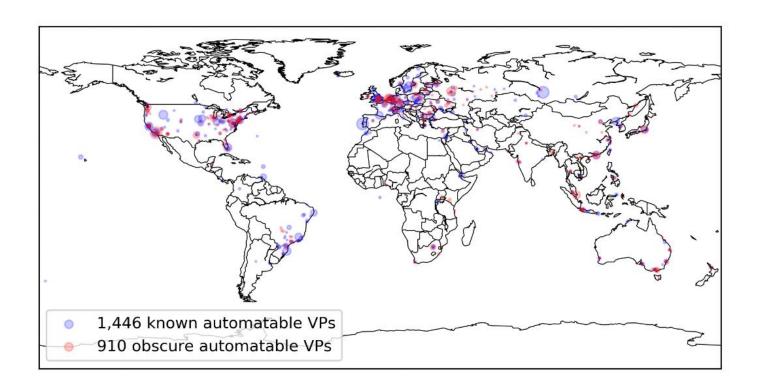
show route IP_ADDRESS

show route as-path-regex AS_PATH_REGEX show route ^AS ping IP_ADDRESS|HOSTNAME traceroute IP_ADDRESS|HOSTNAME



- Connect with partner's router: 7 partners
- Link to partner's Looking Glass: 3 partners

Our Work on LG


Distribution Map of Looking Glass and Probe

- Paper: "Discovering obscure looking glass sites on the web to facilitate internet measurement research"—— CoNEXT'21
- 2500 LGs

Obscure Looking Glass Sites

- 1,446 known LG VPs in 386 cities of 75 countries
- 910 obscure LG VPs in 282 cities in 55 countries

- ✓ The 910 obscure VPs cover 8
 exclusive countries and 160
 exclusive cities, where no
 known LG VPs have been
 found before
- ✓ The 8 countries are mainly distributed in East Africa and South Asia

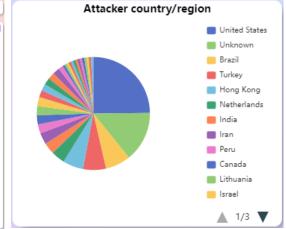
CGTF RIS

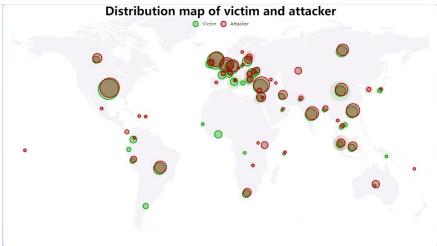
https://bgp.cgtf.net

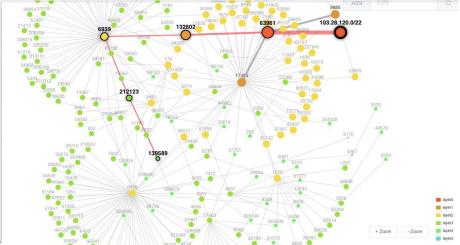
We have established BGP session with 15 partners. Configuration manual can be accessed at

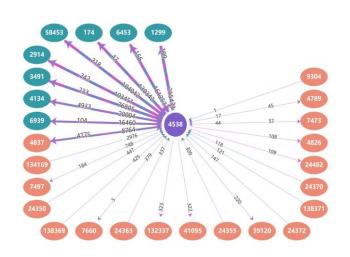
https://www.bgper.net/index.php/document/

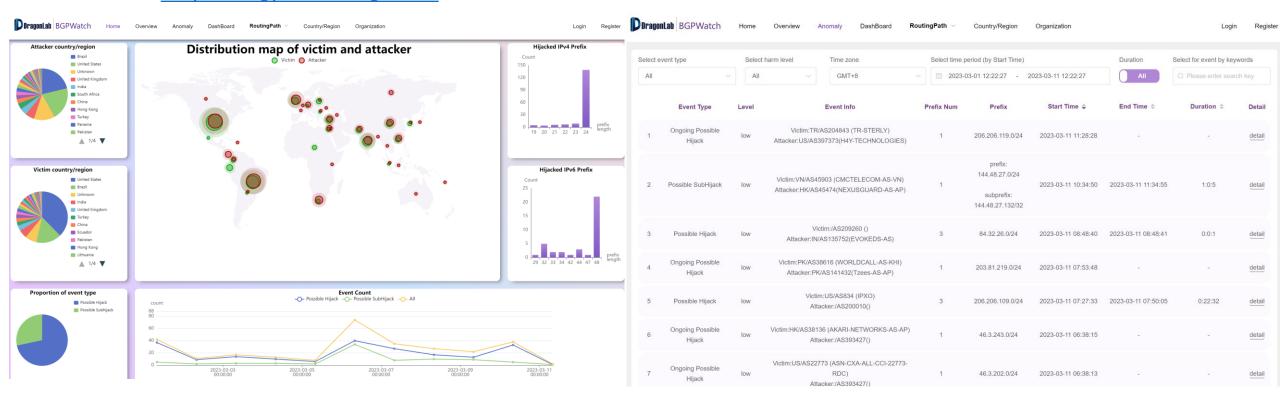
No.	Partner	No.	Partner
1	APAN-JP	9	MYREN
2	AARNET	10	PERN
3	BDREN	11	REANNZ
4	CERNET	12	SINGAREN
5	HARNET	13	ThaiSARN
6	ITB	14	TransPAC
7	KREONET	15	NREN
8	LEARN		

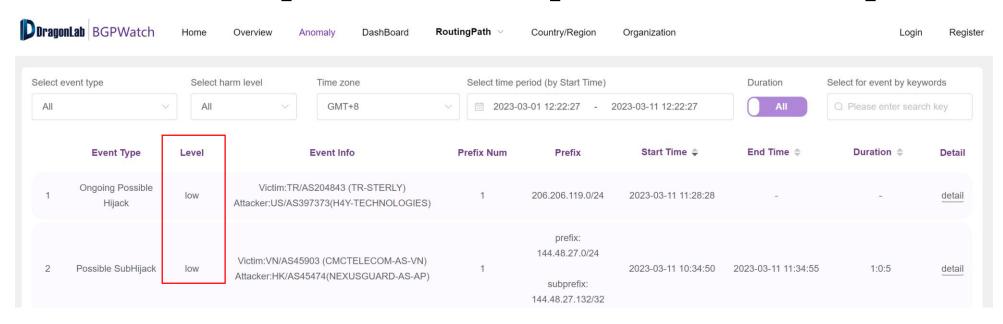

Index of /ribs/2022/07


<u>Name</u>	<u>Last modified</u>	<u>Size</u>	<u>Description</u>
rib.20220730.0600.mr	<u>t.bz2</u> 2022–07–30	06:00	13M
rib.20220730.0800.mr	t.bz2 2022-07-30	08:00	13M
rib.20220730.1000.mr	t.bz2 2022-07-30	10:00	13M
rib.20220730.1200.mr	t.bz2 2022-07-30	12:00	13M
rib.20220730.1400.mr	t.bz2 2022-07-30	14:00	13M
rib.20220730.1600.mr	t.bz2 2022-07-30	16:00	13M
rib.20220730.1800.mr	t.bz2 2022-07-30	18:00	13M
rib.20220730.2000.mr	t.bz2 2022-07-30	20:00	13M
rib.20220730.2200.mr	<u>t.bz2</u> 2022–07–30	22:00	13M
rib.20220731.0000.mr	t.bz2 2022-07-31	00:00	13M
rib.20220731.0200.mr	t.bz2 2022-07-31	02:00	13M
rib.20220731.0400.mr	t.bz2 2022-07-31	04:00	13M
rib.20220731.0600.mr	t.bz2 2022-07-31	06:00	13M
rib.20220731.0800.mr	t.bz2 2022-07-31	08:00	13M
rib.20220731.1000.mrt	<u>.bz2</u> 2022–07–31	10:00	13M


BGP Routing Monitoring and Analysis: BGPWatch


- Hijacking Detection
- Hijacking Statistics
- Dashboard: AS info
- Routing Search:
 - forward, reverse, bi-direction
- Subscribe, Alarming




Hijacking Detection

- Knowledge-based real-time BGP hljacking Detection System
- Public BGP event reporting servcie
- Based on MOAS(subMOAS)
- Rely on Domain Knowledge (ROA, IRR, AS relationship etc)
- URL: https://bgpwatch.cgtf.net

Features --- Event level evaluation

• Evaluate event impact based on importance of AS and prefix.

124.156.136.0|22-0 Possible Hijack Events

middle level

Possible Hijack Events

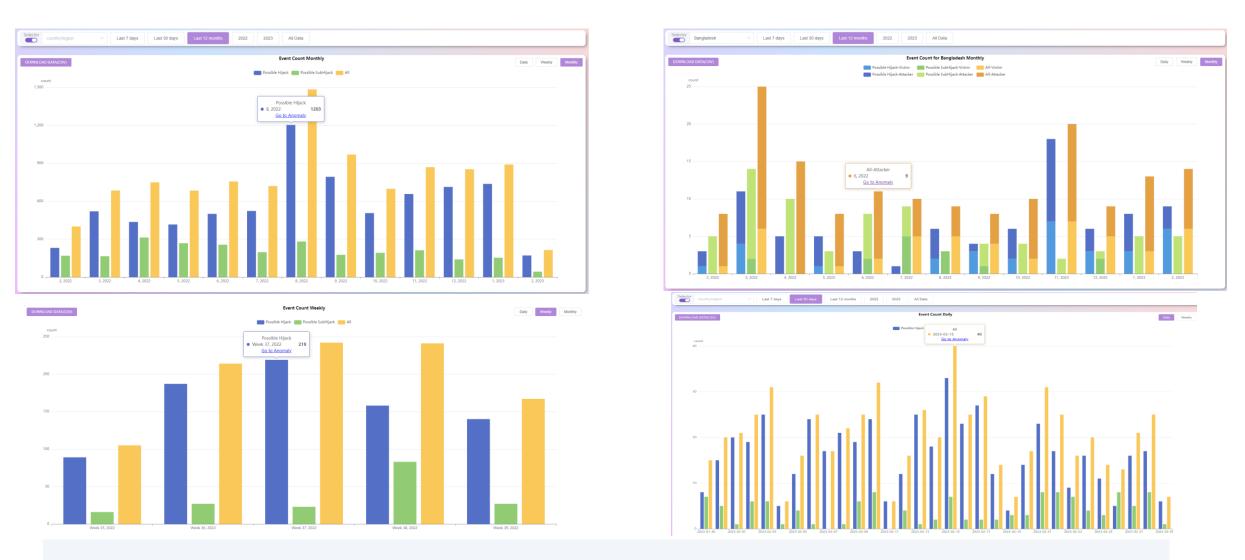
Victim AS: 132203

Victim Country: CN (China)

Victim Description: TENCENT-NET-AP-CN

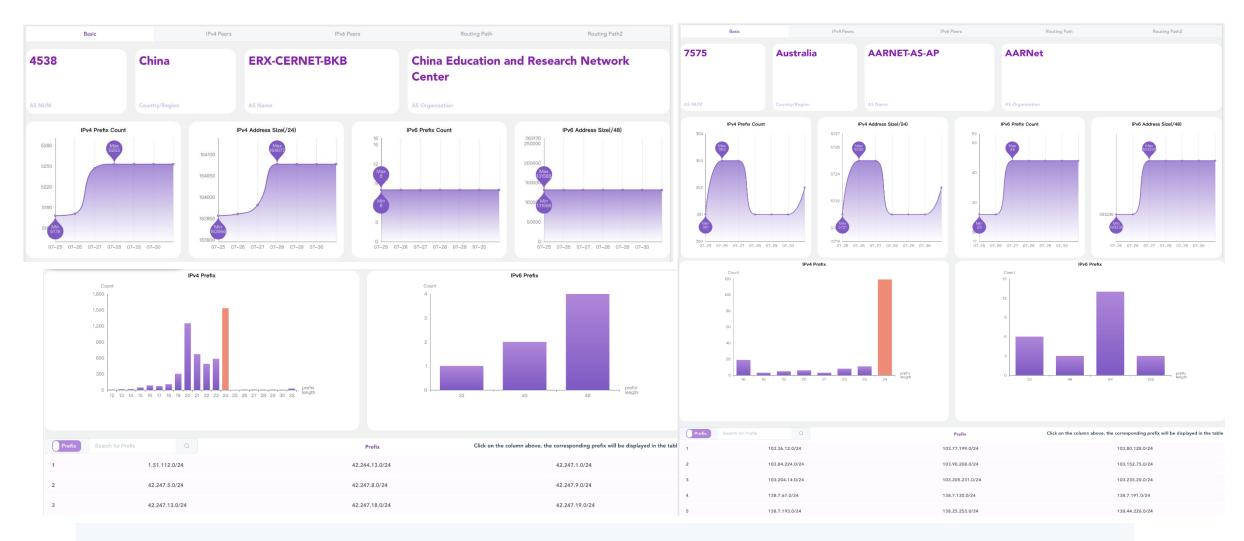
Start Time: 2021-11-08 17:03:38

During Time: 0:10:8

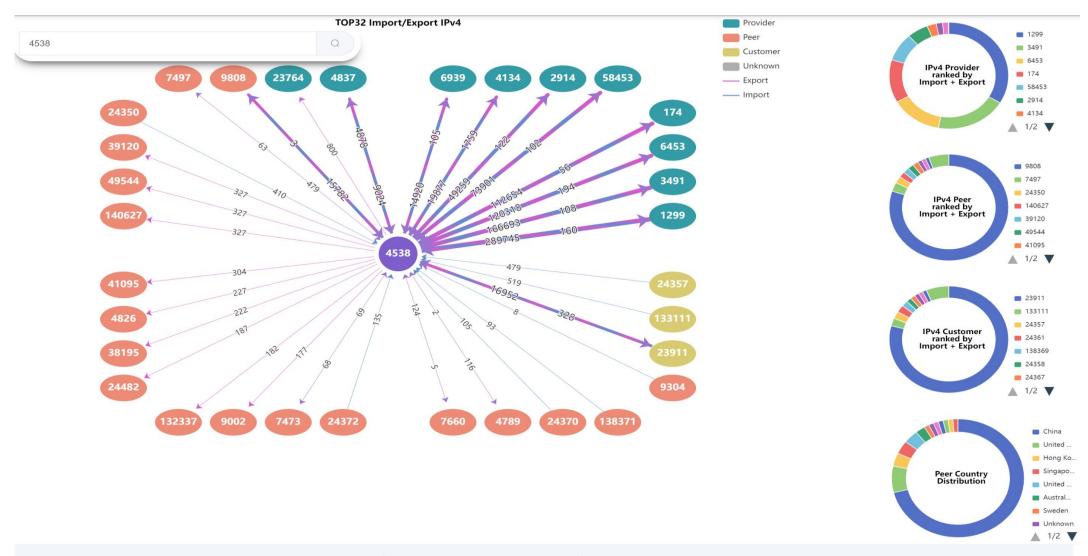

Hijacker AS: 64

Hijacker Country: US (United States)

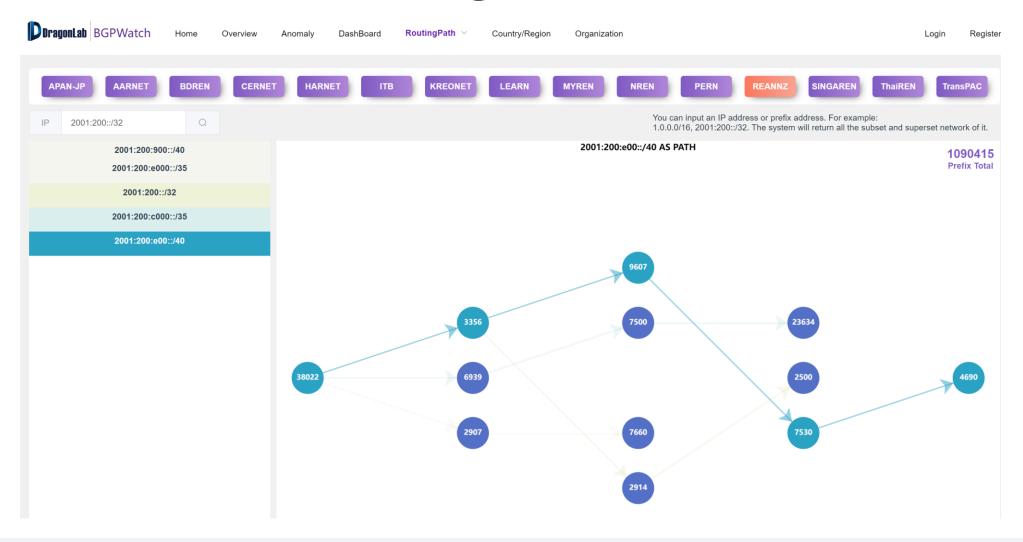
Hijacker Description: MITRE-AS-2


End Time: 2021-11-08 17:13:46

Overview---Statistics for Anomaly Events

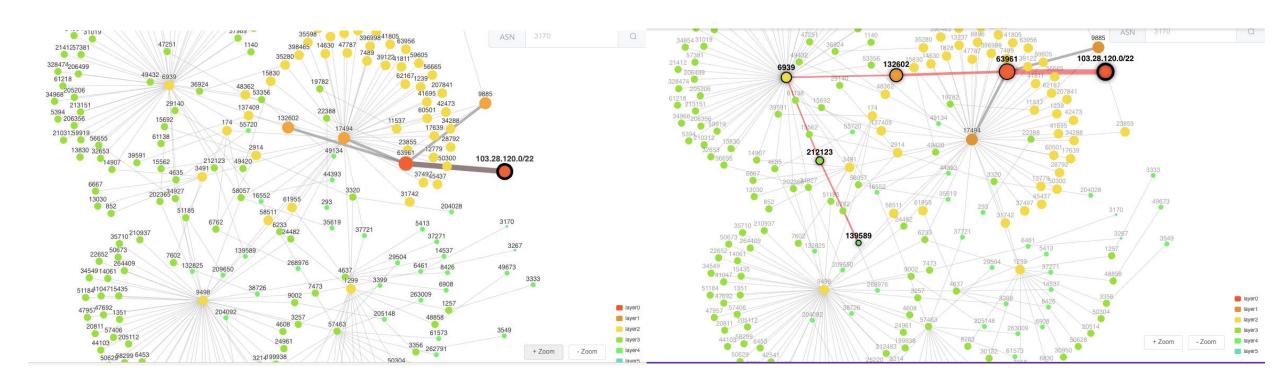

Do statistics by country/region, AS, and by yearly, monthly, weekly, and daily

DashBoard --Basic Info



Support Prefix Searching

Key Peers Information



Routing Path Search

Put a prefix or an IP, they can be either IPv4 or IPv6. Return paths of all sub networks and super networks of the input prefix. Group Prefixes with the same routing path.

Reverse Routing Path

- With better interactivity
- Can display the path to a prefix
- Support search
- The number of layers to display can be selected

+

Comments and Suggestion?

