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IPv6 User Activity Correlation

User Activity Correlation

Leveraging traffic meta-information to identify and
track users

Could work even on traffic encrypted by Transport
Layer Security (TLS)

Work on IPv6

Unlike IPv4 - rare deployment of Network Address
Translation (NAT)

An IPv6 address usually corresponds to one single user
Serious individual-level privacy threat!
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Limitation

Address-based Correlation

- Associating an IPv6 address with a user’s activity
- Weak configuration - a CONSTANT interface identifier:

2001:db8::face:b00c:0:a7 --> 2001:db8::face:b00c:0:a7

- Mitigation - temporary addresses (RFC 4941):
2001:db8::7c61:2880:3148:36e1 2> 2001:db8::6efb:720a:8321:92dc

Dynamic changing and pseudorandom

Traffic Characteristic Correlation

- Associating traffic with a user’s activity
- Analyzing the patterns in the encrypted traffic
- Limitation - closed-world dataset:
Can only correlate the traffic of a selected subset of users (only known users)

USENIX Security '21 SIAMHAN: IPv6 Address Correlation Attacks on TLS Encrypted Traffic via Siamese Heterogeneous Graph Attention Network



|IPv6 Address Correlation Attack

Challenge

Frequently changing client addresses

Widespread payload encryption with TLS :l Making address-to-user correlation unreliable

Our Attack

Learning a correlation function from TLS encrypted traffic
2-step attack:

Two arbitrary addresses

@ 2001:db8::1 - Construct knowledge graph for
\/»Q Whether they belong to the same user 3&& , ge grap
@ 2001:db8::2 each client address
e Function

- Capture the relationship between
each two addresses with an attack
model
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Threat Model
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Attack Scenario

- An observation point for wiretapping
- Adversary‘s background knowledge K, :

- Encrypted communication behavior of all IPv6 addresses during the wiretapping time t
- Correlation function f:

- Judging the relationship of a pair of addresses
- Learned by an attack model - distance metric with a threshold n
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Adversary Ground Truth

Labeling Trick

Adversary’s background knowledge Kt

- Leaked persistent cookie W
- A few users use the changing addresses and access some Pairwise input

WEbSites WIthOUt HTTPS depIOyment Attack model \ l Correlation function f
-  The TLS connections of these addresses could be labeled

A
- Simulating and generating user data by adversary’s own clients ® Distance metric
Correlation Attack

- The adversary could perform large-scale correlation attacks on the
wild TLS traffic without plaintext once obtaining the model
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Knowledge Graph

Heterogeneous graph - multi-type nodes and neighbor relationships

Node and Node Attribute
- Client node C
- The 32-digit hexadecimal IPv6 client address
- Each graph only have one
- Server node S
- The 32-digit hexadecimal IPv6 server address who have
established TLS communications with the client
- Fingerprint node F
- Field values of the ClientHello, ServerHello, Certificate
messages, and statistical characteristics
- Client fingerprints and server fingerprints

h
Node Type Source Label Node Attribute
Client node  IPv6 header C Client address
Server node IPv6 header S Server address
F Record version
Client . &3 Client version
fingerprint ClientHello F Cipher suites
Fy Compression
ClientHello F; SNI
Fg Record version
ServerHello I Server version
Server F Cipher suite
fingerprint Fy Algorithm ID
Certificate Fio Issuer
i Subject
Date statistics Fip First connection
Count statistics  Fi3 Flow count
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SiamHAN

- 49

Server Fingerprints
ClientHello - SN ServerHello - Record version
Date statistics - First connectio T ServerHello - Server version
Count statistics - Flow count ;\\3 ;ﬂ ServerHello - Cipher suite
Sqertiﬁcate - Algorithm ID

Client Fingerprints

S Add ClientHello - Tlient version (S Certificate - Issuer
erver ress Client Fingerprints Certificate - Subject
gf001:db8::005 ClientHello - egoprd versio Client Fingerprints CllentHallo - SNI
ClientHello - Cipher suites ientHello - o ,
G\ Certificate - Algorithm |D
Date statistics - First Sect S'_'\_-ee
ate statistics - Fir nection Certificate - Issuer
. S
Client Address Server Address S isti e/vﬁ x
2001:db8::2036:213:81:573 2001:db8::10:53 Server Adaress, Client Fingerprints Count statistics ~Flow count B Certificate - Subject
®© S 5 ClientHello - Compression Server Fingerprints Server Fingerprints
(a) Node C (b) Nodes S and SCS meta-paths (c) Nodes F and FCF meta-paths (d) Nodes F and F'SF meta-paths

Knowledge Graph

Neighbor Relationship
- SCS meta-path - Connecting Cand S
- The TLS communication activities between the client and multiple servers
- FCF meta-path - Connecting C and client fingerprint F
- The browser parameters that may be used behind the client
- FSF meta-path - Connecting S and server fingerprint F
- The service characteristics behind each server
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SiamHAN

Model Architecture
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SiamHAN

Model Architecture

Locally match similar nodes in each
single meta-path-based semantic

Node-level attention

- Learning the importance of meta-path-based
neighbors and aggregating them to get the
semantic-specific node embeddings (SCS FCF FSF)

Semantic-level attention Semantic aggregation

- learning the importance of three types of
semantic-specific embeddings for each node and
fusing them as comprehensive node embeddings

Graph-level attention Globally match similar nodes

- aggregating the comprehensive embeddings of
all nodes in the knowledge graph to get the
graph embedding
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Metric learning with Siamese Network
- Measuring the distance D between the two
graphs and judging the correlation relationship R

through a threshold n D=|1Z1-2)
= 1 — £21(2,

{1 D<n
R= ,
0 D>n
- Contrastive loss function
L=Y-D?+(1-Y){max(0,m —D)}?
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SiamHAN - User Tracking

User Tracking Task
Target samples
O Q . @ ® Algorithm 1 The tracking algorithm applied by SIAMHAN
Q N O J ® Require: Pre-trained SIAMHAN p; Tracking candidate
-_ _d . set S; Test address set T'; Background knowledge x;.
User Tracking Ensure: Address sets T, link to the same user with each §;

1: for S; in tracking candidate set S, where i < |S| do

. 2 Initialize target address set Ts. —
Searching all addresses correlated to the address nitialize target address set 75, = {}

3:  for T in test address set T, where j < |T'| do
sample of target users 4 Build pairwise knowledge graphs for (S;, T})
5: Test relationship R of (S;, T;) using pre-trained p
, . o 6 end for
- Ta rget users’ one client address activity iIs known 7 Append T; in address set T, if relationship R = 1

- The adversary could compute the relationship 8: end forT N
between each target address and each test address ~_° "™ s foreach %
during the observation
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StamHAN - User Discovery

Algorithm 2 The discovery algorithm applied by SIAMHAN

User Discovery Task Require: Pre-trained SIAMHAN p; Discovery candidate
set §; Background knowledge x;; Task threshold 1.
User Discovery =~ =N . Ensure: User groups G under the discovery candidate set S
e ;7 Y /// SN ) 1: Build knowledge graphs for each S;
\ N )iy R )/ 2: Initialize user group set G = {G;}
VST d 3: Initialize S into the first user group G
~_ ~--7 4: for S; in discovery candidate set S, where 1 <i < |S| do
5:  for Gy in user group set G do
Calculating the correlation between every two 6: for Address S; in group Gy, where j < |Gy| do
addresses to acquire address clusters 7 Calculate distance D for (S;, §;) using p
8: end for
9: Calculate average distance Dy for S; to Gy
- The number of users in traffic is unknown 10: Efn:]fﬂr . 5 "
. 1: i group average distance Dy > 1 then
- The adversary could use a recursion 2 Initialize a new user group Gigy- into G
algorithm to determine the unique users 13: Initialize S; into the new user group Gig| 1
14:  else
15: Classify S; into Gy, with the minimum Dy,
16: end if
17: end for

18: return User group set G
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Evaluation - Dataset

Dataset Composition

- Passively collected on China AS Name %Hits | Device OS  %Hits | SNI %Hits | TLS Field %Hits
. CSTNET 78.6% | Windows 63.7% | *.google.com®@ 17.9% | Record version 93.1%/93.9%
Science and Technol ogy China Unicom 10.1% | Android 237% | *.adobe.com 116% | Client version  93.1%
CNGI-CERNET2 4.0% iOS 6.2% * microsoft.com 11.2% | Server version 93.9%
Network (CSTNET) from CERNET 24% | Linux 50% | *gstatic.com 4.8% | Cipher suites  93.1%/93.9%
Reliance Jio 1.6% Mac OS X 1.3% * macromedia.com 3.3% Compression 93.1%
March to July 2018 Cloudflare 0.8% | BlackBerry 0.1% | *cloudflarecom  2.4% | SNI 93.1%
. . . PKU6-CERNET2 0.5% Chrome OS  0.1% * 2mdn.net 1.9% Algorithm ID  78.4%
- Labeling - persistent cookie TSINGHUA6  0.5% | SymbianOS 0.1% | *xboxlivecom  1.6% | Issuer 78.4%
. . ZSU6-CERNET 0.4% Firefox OS 0.1% * xhcdn.com 1.2% Subject 78.4%
- 1.7k IPv6 users with TLS traffic !

Time-based Data Split

- Realistic setting from an adversary Entity Training  Validation  Test
st 3-mont d’ata or tra . & . Sample Pair 1.2M 0.1M 0.2M
- The 4th month’s data for validation Knowledge 3 months 1 month 1 month

- The 5th month’s data for test
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Evaluation - Baselines and Metrics

Baselines Metrics
User IP Profiling ! - building user profiles through all - True Positive Rate (TPR)
the destination IPs of the client address and using a - False Positive Rate (FPR)
Bayesian classifier - Area Under Curve (AUC)
- Accuracy
User SNI Profiling 2 - using the SNIs in all the TLS - Tracking Accuracy (TA)
ClientHello messages from the client as a user profiles - Discovery Accuracy (DA)

and using a Bayesian classifier

Client Fingerprinting 3 - extracting the fields of the TLS
ClientHello message as the user’s client fingerprints
and using a Random Forest classifier‘ [1] Marek Kumpost and Vashek Matyas. User profiling and re-identification: Case of

university-wide network analysis. In TrustBus, pages 1-10, 2009
[2] Roberto Gonzalez, Claudio Soriente, and Nikolaos Laoutaris. User profiling in the

Deepcorr * - using the flow sequence characteristics to time of HTTPS. In IMC, pages 373-379,2016 |
i . ) ] [3] Blake Anderson and David A. McGrew. OS fingerprinting: New techniques and a
achieve correlation tasks with a deep learning model study of information gain and obfuscation. In CNS, pages 1-9, 2017

[4] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. DeepCorr: Strong flow
correlation attacks on tor using deep learning. In CCS, pages 1962-1976, 2018

USENIX Security '21 SIAMHAN: IPv6 Address Correlation Attacks on TLS Encrypted Traffic via Siamese Heterogeneous Graph Attention Network



Evaluation - Analysis of Hierarchical Attention
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Evaluation - Address Correlation
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Evaluation - Address Correlation
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Evaluation - User Tracking and User Discovery

0.30M
: ......................................................... 1000&
i / 400
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| // =
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SiamHAN outperforms existing correlation techniques with 99% and 88% accuracy compared to
85% and 60% accuracy of the best baseline on the user tracking and user discovery task

SiamHAN could achieve 1.10~1.19 and 1.40 ~ 1.54 times more hit than Deepcorr
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Evaluation - Countermeasures

Traffic Obfuscation

- C-Random - random forged client address Obfuscation  Address User User
- CF-Random - random browser parameters Method  Correlation Tracking Discovery

. . . C-Random 0.855 0.905 0.808

- CF-background - adding background traffic of different CFRandom 0878 087 0810

browsers CF-Background 0.871 0.922 0.823

. . . SF-Background 0.893 0.910 0.830

- SF-background - adding background traffic of different Combination 0705 0.769 0.643

online services
- The combination of all four methods - knowledge barrier

Attack Chance Reduction

- Escape - Tor system, proxy
- Meta-information protection - encrypted VPN
- Address-user relation protection - NAT
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Conclusion

- We explore the implementation of user activity correlation on IPv6 networks.

- We propose |IPv6 address correlation attacks, which leverage an attack model
SiamHAN to learn the correlation relationship between two arbitrary IPv6
addresses based on the background knowledge of TLS traffic.

- We hope that our work demonstrates the serious threat of IPv6 address
correlation attacks and calls for effective countermeasures deployed by the
IPv6 community.
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