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-1 Background

O massive users’ (private) data + AT
spawned many smart industries:
smart healthcare, intelligent transport.

O collect users’ (private) data to a central
server, which leads to information
leakage.

The higher the utility,
the worse the privacy. perception
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1 Background D aihErs

@ Train: Each client performs model
training based on local dataset.

@ Upload: Each client sends the
trained model parameters to

server. 2. Upload
Gradient T—
® Aggregation:  Central  server -
aggregates received models. \
@ Update: The server sends the S- S
updated model to each client. | Training e BB T 0 ... %05

® repeat steps O-®@ until

predetermined condition is met. The workflow of federated learning

The raw data doesn't move and the model does.



-1 Background

Chanllenges:
O Data and device heterogeneous:

® Non-IID data

® Different devices abilities form CPU, memory,

disk read and write speed etc.
O Communication pressure:

® For server, models of massive clients are uploaded to the server (the
only aggregated node) , which causes the server to be congested, furter,
causes the time of obtained global model to be longer.

® For clients, the network states are dynamic and different, which causes
uplink communication time is different, further, causes the time of obtained
global model to be longer .
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2.1 A Cluster-Asynchronous Federated Multi-Task Learning/
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O problem 1
Data and device heterogeneous:

O solution 1
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Per'formance.

® Datasets
® FEMNIST
® CIFAR-100

® Experiment settings
® Non-iid process:
® FEMNIST: Natural Non-iid Dataset

® CIFAR-100: hierarchical Latent Dirichlet
Allocation (LDA) process

® Clients:
® 539 clients, 120772 samples for FEMNIST
® 100 clients, 60000 samples for CIFAR-100
® Devices:
® Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz
® Tntel(R) Xeon(R) E5-2620 v4 CPU @ 2.10GHz
® Tntel(R) Core (TM) i5-9300H CPU @ 2.40GHz
® Intel(R) Core (TM)i7-7700HQ CPU @ 2.806Hz
® Meftrics

® Accuracy
® Training Time.
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- Knowledge Distillation with multiple servers

in Personalized Federated Learning
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O problem 2
 non-IID data
« Communication

pressure--  from

server

O solution 2

« Aggregate model
servers based on topology:

« Federated distillation.

parameters of
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i
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mask',

|
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M is the total humber of aggregate nodes,

Np,is the number of data of common data set of the aggregate
node m, l
timis the value in the topology matrix which represents the
connection relationship between i,, node and m,, node,
Wp,is the model parameter of the m;,aggregate node.
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B 2 2 Knowledge Distillation with multiple server X aihers

in Personalized Federated Learning
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. > 3 Communication-Efficient Federated Learning
with Adaptive Compression under Dynamic Bandwidth
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O problem 3 O solution 3

Communication pressure-- from clients « Aware and predict bandwidth;

« bandwidth is dynamic and different « Compress local model adaptively.
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1. Bandwidth—Aware and Training

4. Upload

AdapComFL




B > 3 Communication-Efficient Federated Learning ~
with Adaptive Compression under Dynamic Bandwidth = =7 ==orms

Performance

® Datasets
® Bandwidth datasets:
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3.1 Background--B6P Routing Policy D EEREAE

O The Internet is composed of tfens of thousands of
Autonomous Systems (ASes) and they use Border Gateway
Protocol (BGP) to exchange reachability information.

O The routing polices of ASes for path selection are business-
oriented.

® Common business relationship types between ASes are:
« Customer-to-provider (C2P)
* Provider-to-customer (P2C)
* Peer-to-peer (P2P)
® Common routing policy in the Internet is: @ ovors — lomien

* routes learned from one peer or provider cannot be propagated to
another peer or provider (valley-free rule)
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3.1 BGCkgI"OUHd--RouTe Leaks

O Route leaks occure when an attacker propagates a valid route
36 ond the scope intended by the routing policy of the involved
es

(violate valley-free rule )
O Causing major outages by redirecting traffic
O Bring a risk of Man-in-the-Middle attacks
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O Main route leak detection methods:

O Directly sharing routing polices or business relationships (no privacy
guarantee)
O [1-3] add new BGP attribute or extend BGP community fo convey business
relationship information.
O IRR[4], registering routing polices on an open database and using the registrations
to filter leaks.
O ASPA[5] adds routing customer-provider objects to RPKI repository.

[1]. Sriram, Kotikalapudi, et al. "Methods for detection and mitigation of bgp route leaks." draft-ietf-idr-route-leak-detection-mitigation-06 (2017).

[2]. Azimov, A., E. Bogomazov, and R. Bush. "Route leak detection and filtering using roles in update and open messages." draft-ymbk-idr-bgp-open-policy-03 (2017).

[3]. Sriram, Kotikalapudi, et al. "Methods for detection and mitigation of bgp route leaks." draft-ietf-idr-route-leak-detection-mitigation-06 (2017).

[4]. Internet Routing Registry (IRR), online. https://www.apnic.net/about-apnic/whois_search/about/what-is-in-whois/irr/

[5]. Azimov, Alexander, et al. "Verification of AS PATH Using the Resource Certificate Public Key Infrastructure and Autonomous System Provider Authorization. IETF, 2018."
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3.1 Bac kgI"OU nd--Challenges for detecting route leaks” BEHEAS

0 ASes are unwilling to reveal their business relationships to
others

due to
OEconomic issues
OComplexity of routing polices
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3.1 Bac qu'OUhd——Challenges for detecting route leaks? - AhErs

0 ASes are unwilling to reveal their business relationships to
others

due to
OEconomic issues
OComplexity of routing polices

How to detect route leak while protect
business relationship privacy? |
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3.2 Federated learning route leak detection in Inter-domain routing ‘F,}, “"“P@f%

® Aschain Manager

® Each AS play roles as client of
federated learning and node in
blockchain (denoted as AM)

® Training Data
® Transforming routing policies to
AS triples with labels (fraining
datasets)
x instead of directly sharing AS
relationships

x labels are generated by valley-
fr'ee rule using known local routing

polices.

the framework of FL-RLD
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3.2 Federated learning route leak detection in Inter-domain routing
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@ Step 1 obtain task information

Blockchain C C .‘
Step 2 local tralnlng
4

}  Step4aggregate  AM 1 AM 2 AM N
received local updates to

a global update T OO T

Step 3 exchange local updates

Step 5 make consensus of
Q aggregated global update

Step 6 generate a new block and € Step 7 if the training is not

store the final global update to blockchain finished, all AMs can download
new global model update to

update their local models and
repeat step 2-6.

the workflow of FL-RLD

Step 1 : obtain training task information
(i.e., initial model, training epoches) from
blockchain.

Step 2 to Step 3: train local model locally
and upload local model to blokchain.

Step 4 to Step 5: aggregate all local model
and then global update model is obtained
Step 6: the aggerated global update model
is stored to blockchain

Step 7: if the training cannot satisfy fixed
condition, steps 2-6 are repeated.



3.3 Performance D aahErs

» Topology

CAIDA IPv6 AS relationship dataset, Jan, 2021
(12,721 ASes, 173,462 AS links)

» Evaluation metrics

A B TP+ TN TP
Y = TP+ FP+TN + FN Recall = 75—
TP .
Precision = Fscore — 9 Precision x Recall

TP+ FP Precision + Recall
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3.3 Performance
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» 4 groups of experiments, each group has 5 clients

TABLE 1: The triple distribution of different groups

Data size Anomaly Regular Anomaly % Regular %
Group 1 (unbalanced data size + unbalanced class distribution) 13550 12224 1326 90.21% 9.79%
Clientl (51.19%) 6936 6192 744 89.27% 10.73%
Client2 (30.92%) 4189 3913 276 93.41% 6.59%
Client3 (0.51%) 69 33 36 47.83% 52.17%
Client4 (14.18%) 1922 1680 242 87.41% 12.59%
Client5 (3.20%) 434 406 28 93.55% 6.45%
Group 2 (balanced data size + unbalanced class distribution) 63468 51066 12402 80.46% 19.54%
Clientl (19.77%) 12549 12099 450 96.41% 3.59%
Client2 (20.69%) 13134 12158 976 92.57% 7.43%
Client3 (19.25%) 12218 7606 4612 62.25% 37.75%
Client4 (19.49%) 12369 10205 2164 82.51% 17.50%
Client5 (20.79%) 13198 8998 4200 68.18% 31.82%
Group 3 (unbalanced data size + balanced class distribution) 416348 208174 208174 50.00% 50.00%
Clientl (8.58%) 35712 17856 17856 50.00% 50.00%
Client2 (35.93%) 149580 74790 74790 50.00% 50.00%
Client3 (43.45%) 180904 90452 90452 50.00% 50.00%
Client4 (10.40%) 43316 21658 21658 50.00% 50.00%
Client5 (1.64%) 6836 3418 3418 50.00% 50.00%
Group 4 (balanced data size + balanced class distribution) 17090 8512 8578 49.81% 50.19%
Client1 (20%) 3418 1761 1657 51.52% 48.48%
Client2 (20%) 3418 1672 1746 48.92% 51.08%
Client3 (20%) 3418 1724 1694 50.44% 49.56%
Client4 (20%) 3418 1679 1739 49.12% 50.88%
Client5 (20%) 3418 1676 1742 49.04% 50.97%
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3.3 Performance

single AS vs. FL-RLD
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Fig. 4: The Performance of FL-RLD method compared with single AS learning method (C1, C2, C3, C4, C5) and Central
Learning (CL) method

global repository vs. FL-RLD
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9.79% lar 19.54% 50% lar 50.19%

Fig. 5: The performance comparison of FL-RLD and other methods.
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3.3 Performance

» Deployment strategies
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The more number of malicious triples,the better detection result.
Peer deployment strategy can cover the most number of malicious

triples than other two strategies with the same deployment rate.

ASes with a large number of peers can be deployed which achieves
better detection results.
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4. Conclusion D aihers

® faced with data heterogeneous + device heterogeneous, CAFAML
achieves higher accuracy and shorter training time.

® faced with data heterogeneous +communication pressure, KDPFedAvg
achieves shorter communicaition time with similar accuracy.

® faced with communication pressure from clients, AdapComFL achieves
better communicaition efficientcy with competitive accuracy.

® for route leak detection, deployment Suggestion of FL-RLD: ASes
with a large number of peers can be deployed which achieve better

detection results.
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